9,681 research outputs found
An interactive computer code for calculation of gas-phase chemical equilibrium (EQLBRM)
A user friendly, menu driven, interactive computer program known as EQLBRM which calculates the adiabatic equilibrium temperature and product composition resulting from the combustion of hydrocarbon fuels with air, at specified constant pressure and enthalpy is discussed. The program is developed primarily as an instructional tool to be run on small computers to allow the user to economically and efficiency explore the effects of varying fuel type, air/fuel ratio, inlet air and/or fuel temperature, and operating pressure on the performance of continuous combustion devices such as gas turbine combustors, Stirling engine burners, and power generation furnaces
Isospin Fluctuations from a Thermally Equilibrated Hadron Gas
Partition functions, multiplicity distributions, and isospin fluctuations are
calculated for canonical ensembles in which additive quantum numbers as well as
total isospin are strictly conserved. When properly accounting for
Bose-Einstein symmetrization, the multiplicity distributions of neutral pions
in a pion gas are significantly broader as compared to the non-degenerate case.
Inclusion of resonances compensates for this broadening effect. Recursion
relations are derived which allow calculation of exact results with modest
computer time.Comment: 10 pages, 5 figure
First measurements of the flux integral with the NIST-4 watt balance
In early 2014, construction of a new watt balance, named NIST-4, has started
at the National Institute of Standards and Technology (NIST). In a watt
balance, the gravitational force of an unknown mass is compensated by an
electromagnetic force produced by a coil in a magnet system. The
electromagnetic force depends on the current in the coil and the magnetic flux
integral. Most watt balances feature an additional calibration mode, referred
to as velocity mode, which allows one to measure the magnetic flux integral to
high precision. In this article we describe first measurements of the flux
integral in the new watt balance. We introduce measurement and data analysis
techniques to assess the quality of the measurements and the adverse effects of
vibrations on the instrument.Comment: 7 pages, 8 figures, accepted for publication in IEEE Trans. Instrum.
Meas. This Journal can be found online at
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=1
Analytic Solution of the Pion-Laser Model
Brooding over bosons, wave packets and Bose - Einstein correlations, we find
that a generalization of the pion-laser model for the case of overlapping
wave-packets is analytically solvable with complete n-particle symmetrization.
The effective radius parameter of the two-particle correlation function is
reduced for low values and enlargened for high values of the mean momentum in
the rare gas limiting case, as compared to the case when multi-particle
symmetrization effects are neglected.
These results explicitly depend on the multiplicity, providing a theoretical
basis for event-by-event analysis of high energy heavy ion reactions.Comment: LaTeX, ReVTeX 3.1, 7 pages, uses 1 eps figure and epsfig.sty
(shortened version
Canonical and Microcanonical Distributions for Fermi Systems
Recursion relations are presented that allow exact calculation of canonical
and microcanonical partition functions of degenerate Fermi systems, assuming no
explicit two-body interactions. Calculations of the level density, sorted by
angular momentum, are presented for Ni-56 are presented. The issue of treating
unbound states is also addressed.Comment: 5 pages, 5 figure
Quantum-Statistical Correlations and Single Particle Distributions for Slowly Expanding Systems with Temperature Profile
Competition among particle evaporation, temperature gradient and flow is
investigated in a phenomenological manner, based on a simultaneous analysis of
quantum statistical correlations and momentum distributions for a
non-relativistic, spherically symmetric, three-dimensionally expanding, finite
source. The parameters of the model emission function are constrained by fits
to neutron and proton momentum distributions and correlation functions in
intermediate energy heavy-ion collisions. The temperature gradient is related
to the momentum dependence of the radius parameters of the two-particle
correlation function, as well as to the momentum-dependent temperature
parameter of the single particle spectrum, while a long duration of particle
evaporation is found to be responsible for the low relative momentum behavior
of the two-particle correlations.Comment: 20 pages + 5 ps figures, ReVTeX, uses psfig.sty, the description is
extended to include final state interactions, phenomenological evaporation
and to fit intermediate energy heavy ion proton and neutron spectrum and
correlation dat
- …