19 research outputs found

    Feasibility and analysis of bipolar concentric recording of Electrohysterogram with flexible active electrode

    Full text link
    The conduction velocity and propagation patterns of Electrohysterogram (EHG) provide fundamental information about uterine electrophysiological condition. The accuracy of these measurements can be impaired by both the poor spatial selectivity and sensitivity to the relative direction of the contraction propagation associated with conventional disc electrodes. Concentric ring electrodes could overcome these limitations the aim of this study was to examine the feasibility of picking up surface EHG signals using a new flexible tripolar concentric ring electrode (TCRE), and to compare it with conventional bipolar recordings. Simultaneous recording of conventional bipolar signals and bipolar concentric EHG (BC-EHG) were carried out on 22 pregnant women. Signal bursts were characterized and compared. No significant differences among channels in either duration or dominant frequency in the Fast Wave High frequency range were found. Nonetheless, the high pass filtering effect of the BC-EHG records resulted in lower frequency content within the range 0.1 to 0.2 Hz than the bipolar ones. Although the BC-EHG signal amplitude was about 5-7 times smaller than that of bipolar recordings, similar signal-to-noise ratio was obtained. These results suggest that the flexible TCRE is able to pick up uterine electrical activity and could provide additional information for deducing uterine electrophysiological condition.The authors are grateful to the Obstetrics Unit of the Hospital Universitario La Fe de Valencia (Valencia, Spain), where the recording sessions were carried out. The work was supported in part by the Ministerio de Ciencia y Tecnologia de Espana (TEC2010-16945), by the Universitat Politecnica de Valencia (PAID SP20120490) and Generalitat Valenciana (GV/2014/029) and by General Electric Healthcare.Ye Lin, Y.; Alberola Rubio, J.; Prats Boluda, G.; Perales Marin, AJ.; Desantes, D.; Garcia Casado, FJ. (2015). Feasibility and analysis of bipolar concentric recording of Electrohysterogram with flexible active electrode. Annals of Biomedical Engineering. 43(4):968-976. https://doi.org/10.1007/s10439-014-1130-5S968976434Alberola-Rubio, J., G. Prats-Boluda, Y. Ye-Lin, J. Valero, A. Perales, and J. Garcia-Casado. Comparison of non-invasive electrohysterographic recording techniques for monitoring uterine dynamics. Med. Eng. Phys. 35(12):1736–1743, 2013.Besio, W. G., K. Koka, R. Aakula, and W. Dai. Tri-polar concentric ring electrode development for laplacian electroencephalography. IEEE Trans. Biomed. Eng. 53(5):926–933, 2006.Devasahayam, S. R. Signals and Systems in Biomedical Engineering. Berlin: Springer, 2013.Devedeux, D., C. Marque, S. Mansour, G. Germain, and J. Duchene. Uterine electromyography: a critical review. Am. J. Obstet. Gynecol. 169(6):1636–1653, 1993.Estrada, L., A. Torres, J. Garcia-Casado, G. Prats-Boluda, and R. Jane. Characterization of laplacian surface electromyographic signals during isometric contraction in biceps brachii. Conf. Proc. IEEE Eng Med. Biol. Soc. 2013:535–538, 2013.Euliano, T. Y., D. Marossero, M. T. Nguyen, N. R. Euliano, J. Principe, and R. K. Edwards. Spatiotemporal electrohysterography patterns in normal and arrested labor. Am. J. Obstet. Gynecol. 200(1):54–57, 2009.Farina, D., and C. Cescon. Concentric-ring electrode systems for noninvasive detection of single motor unit activity. IEEE Trans. Biomed. Eng. 48(11):1326–1334, 2001.Fele-Zorz, G., G. Kavsek, Z. Novak-Antolic, and F. Jager. A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Med. Biol. Eng Comput. 46(9):911–922, 2008.Garfield, R. E., and W. L. Maner. Physiology and electrical activity of uterine contractions. Semin. Cell Dev. Biol. 18(3):289–295, 2007.Garfield, R. E., W. L. Maner, L. B. Mackay, D. Schlembach, and G. R. Saade. Comparing uterine electromyography activity of antepartum patients vs. term labor patients. Am. J. Obstet. Gynecol. 193(1):23–29, 2005.Garfield, R. E., H. Maul, L. Shi, W. Maner, C. Fittkow, G. Olsen, and G. R. Saade. Methods and devices for the management of term and preterm labor. Ann. N. Y. Acad. Sci. 943(1):203–224, 2001.Hassan, M., J. Terrien, C. Muszynski, A. Alexandersson, C. Marque, and B. Karlsson. Better pregnancy monitoring using nonlinear correlation analysis of external uterine electromyography. IEEE Trans. Biomed. Eng. 60(4):1160–1166, 2013.Kaufer, M., L. Rasquinha, and P. Tarjan. Optimization of multi-ring sensing electrode set, Conference proceedings of IEEE Engineering in Medicine and Biology Society, 1990, pp. 612–613.Koka, K., and W. G. Besio. Improvement of spatial selectivity and decrease of mutual information of tri-polar concentric ring electrodes. J. Neurosci. Methods 165(2):216–222, 2007.Lu, C.-C., and P. P. Tarjan. Pasteless, active, concentric ring sensors for directly obtained laplacian cardiac electrograms. J. Med. Biol. Eng. 22(4):199–203, 2002.Lucovnik, M., W. L. Maner, L. R. Chambliss, R. Blumrick, J. Balducci, Z. Novak-Antolic, and R. E. Garfield. Noninvasive uterine electromyography for prediction of preterm delivery. Am. J. Obstet. Gynecol. 204(3):228.e1–228.e10, 2011.Maner, W. L., and R. E. Garfield. Identification of human term and preterm labor using artificial neural networks on uterine electromyography data. Ann. Biomed. Eng. 35(3):465–473, 2007.Maner, W. L., R. E. Garfield, H. Maul, G. Olson, and G. Saade. Predicting term and preterm delivery with transabdominal uterine electromyography. Obstet. Gynecol. 101(6):1254–1260, 2003.Marque, C., J. M. Duchene, S. Leclercq, G. S. Panczer, and J. Chaumont. Uterine EHG processing for obstetrical monitoring. IEEE Trans. Biomed. Eng. 33(12):1182–1187, 1986.Marque, C. K., J. Terrien, S. Rihana, and G. Germain. Preterm labour detection by use of a biophysical marker: the uterine electrical activity. BMC. Pregnancy Childbirth. 7(Suppl1):S5, 2007.Maul, H., W. L. Maner, G. Olson, G. R. Saade, and R. E. Garfield. Non-invasive transabdominal uterine electromyography correlates with the strength of intrauterine pressure and is predictive of labor and delivery. J. Matern. Fetal Neonatal Med. 15(5):297–301, 2004.Miles, A. M., M. Monga, and K. S. Richeson. Correlation of external and internal monitoring of uterine activity in a cohort of term patients. Am. J. Perinatol. 18(3):137–140, 2001.Prats-Boluda, G., J. Garcia-Casado, J. L. Martinez-de-Juan, and Y. Ye-Lin. Active concentric ring electrode for non-invasive detection of intestinal myoelectric signals. Med. Eng. Phys. 33(4):446–455, 2010.Prats-Boluda, G., Y. Ye-Lin, E. Garcia-Breijo, J. Ibañez, and J. Garcia-Casado. Active flexible concentric ring electrode for non-invasive surface bioelectrical recordings. Meas. Sci. Technol. 23(12):1–10, 2012.Rabotti, C., M. Mischi, S. G. Oei, and J. W. Bergmans. Noninvasive estimation of the electrohysterographic action-potential conduction velocity. IEEE Trans. Biomed. Eng. 57(9):2178–2187, 2010.Rabotti, C., S. G. Oei, H. J. van ‘t, and M. Mischi. Electrohysterographic propagation velocity for preterm delivery prediction. Am. J. Obstet. Gynecol. 205(6):e9–e10, 2011.Rooijakkers, M. J., S. Song, C. Rabotti, S. G. Oei, J. W. Bergmans, E. Cantatore, and M. Mischi. Influence of electrode placement on signal quality for ambulatory pregnancy monitoring. Comput. Math. Methods Med. 2014(1):960980, 2014.Schlembach, D., W. L. Maner, R. E. Garfield, and H. Maul. Monitoring the progress of pregnancy and labor using electromyography. Eur. J. Obstet. Gynecol. Reprod. Biol. 144(Suppl1):S33–S39, 2009.Sikora, J., A. Matonia, R. Czabanski, K. Horoba, J. Jezewski, and T. Kupka. Recognition of premature threatening labour symptoms from bioelectrical uterine activity signals. Arch. Perinatal Med. 17(2):97–103, 2011.Terrien, J., C. Marque, and B. Karlsson. Spectral characterization of human EHG frequency components based on the extraction and reconstruction of the ridges in the scalogram, Conference proceedings of IEEE Engineering in Medicine and Biology Society, 2007, pp. 1872–1875.Terrien, J., C. Marque, T. Steingrimsdottir, and B. Karlsson. Evaluation of adaptive filtering methods on a 16 electrode electrohysterogram recorded externally in labor, 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing, 2007, Vol. 16, pp. 135–138.U.S. Preventive Services Task Force. Guide to clinical preventive services: an assessment of the effectiveness of 169 interventions. Baltimore: Willams & Wilkins, 1989

    Diseño, aplicación y valoración de actividades destinadas al trabajo y evaluación de múltiples competencias transversales en grupos numerosos de máster en ingeniería, empleando el aprendizaje basado en proyectos

    Get PDF
    Society requires graduates to acquire cross-curricular skills during their education since this type of skills is better valued by employers than even degree-specific skills. Active methodologies to develop skills have been successfully implemented in small groups. In contrast,working and objectively evaluating cross-curricular skills in large groups presents a number of additional difficulties such as excessive workload for teachers, which generates resistance to change and lack of experience. The aim of this study is to design, apply and assess training activities with a large number of engineering students, more specifically 288, who were taking a compulsory subject. These training activities used project-based learning and portfolios to work and evaluate multiple cross-curricular skills. The results show that it is feasible to design and develop training activities applicable in large groups that promote the acquisition of multiple cross-curricular skills, allowing for a significant improvement in the knowledge level of the students, without assuming an excessive workload for students and teachers. The results also show that the extent to which students acquired cross-curricular skills after the activities depends mainly on their previous level, and not so much on the time they devoted to the project. However, time reveals itself as an important factor when it comes to the mastery of skills. Finally, 86% of the students have a positive perception of the methodology employed, indicating that it provides a more applied understanding of the subject.La sociedad requiere de los egresados la formación en las competencias transversales que incluso son mejor valoradas por los empleadores que las competencias específicas del grado. Las metodologías activas para desarrollar las competencias se han implantado con éxito en grupos reducidos. En cambio, trabajar y evaluar objetivamente las competencias transversales en grupos numerosos presenta una serie de dificultades añadidas como una excesiva carga de trabajo para el profesorado, con la subsiguiente resistencia al cambio y falta de experiencias. El objetivo de este trabajo es valorar una propuesta formativa que emplea la metodología de aprendizaje basado en proyectos y el portafolio como método para trabajar y evaluar múltiples competencias transversales en grupos numerosos de estudiantes de ingeniería. Los resultados muestran que es factible diseñar y desarrollar actividades formativas aplicables en grupos numerosos, que favorezcan la adquisición de múltiples competencias transversales. Además, han permitido obtener una mejora significativa en el nivel de dominio de las mismas, sin suponer una carga de trabajo adicional excesiva ni para el alumnado ni para el profesorado. Asimismo, los resultados muestran que el nivel de dominio de las competencias transversales alcanzado por el alumno tras las actividades depende principalmente del nivel de dominio previo, y no tanto del tiempo de dedicación al proyecto. No obstante éste último es un factor importante en la mejora en el nivel de dominio de las competencias. Finalmente, el 86% de los alumnos valoran positivamente la metodología empleada, indicando que proporciona una visión más aplicada de la asignatura

    Valoración de la actividad muscular asociada al uso de herramientas laparoscópicas mediante EMG. Nueva propuesta de análisis bivariado amplitud-frecuencia

    Get PDF
    El avance de la medicina dirige las técnicas de intervención hacia aquellas mínimamente invasivas (CMI). Su instrumental, en ocasiones, carece de ergonomía lo que puede provocar lesiones al personal sanitario. El objetivo de este trabajo es evaluar, a través de biomarcadores obtenidos de registros electromiográficos de superficie (sEMG), dos herramientas de laparoscopia: un prototipo y otra empleada en la práctica clínica habitual. Para ello, se dispone de registros de sEMG de 17 sujetos de los músculos bíceps, deltoides, trapecio y flexor radial del carpo, obtenidos mediante un protocolo isométrico. Se han computado parámetros temporales, espectrales y de complejidad como biomarcadores de la actividad muscular determinando la existencia de diferencias estadísticamente significativas entre herramientas y posiciones para cada uno de los biomarcadores. Se ha completado el estudio a través de un Joint Analysis of Spectrum and Amplitude (JASA) tradicional y con una nueva propuesta que considera otros parámetros. Finalmente, los biomarcadores parecen apuntar hacia una menor tendencia a la aparición de fatiga muscular con la herramienta prototipo para el bíceps, deltoides y trapecio, y con la herramienta control para el flexor radial del carpo. Los nuevos análisis bivariados propuestos permiten una caracterización más exhaustiva del estado muscular

    Enhancement of the non-invasive electroenterogram to identify intestinal pacemaker activity

    Full text link
    Surface recording of electroenterogram (EEnG) is a non-invasive method for monitoring intestinal myoelectrical activity. However, surface EEnG is seriously affected by a variety of interferences: cardiac activity, respiration, very low frequency components and movement artefacts. The aim of this study is to eliminate respiratory interference and very low frequency components from external EEnG recording by means of empirical mode decomposition (EMD), so as to obtain more robust indicators of intestinal pacemaker activity from external EEnG signal. For this purpose, 11 recording sessions were performed in an animal model under fasting conditions and in each individual session the myoelectrical signal was recorded simultaneously in the intestinal serosa and the external abdominal surface in physiological states. Various parameters have been proposed for evaluating the efficacy of the method in reducing interferences: the signal-to-interference ratio (S/I ratio), attenuation of the target and interference signals, the normal slow wave percentage and the stability of the dominant frequency (DF) of the signal. The results show that the S/I ratio of the processed signals is significantly greater than the original values (9.66±4.44 dB vs. 1.23±5.13 dB), while the target signal was barely attenuated (-0.63±1.02 dB). The application of the EMD method also increased the percentage of the normal slow wave to 100% in each individual session and enabled the stability of the DF of the external signal to be increased considerably. Furthermore, the variation coefficient of the DF derived from the external processed signals is comparable to the coefficient obtained using internal recordings. Therefore the EMD method could be a very useful tool to improve the quality of external EEnG recording in the low frequency range, and therefore to obtain more robust indicators of the intestinal pacemaker activity from non invasive EEnG recordingsThe authors would like to thank D Alvarez-Martinez, Dr C Vila and the Veterinary Unit of the Research Centre of 'La Fe' University Hospital (Valencia, Spain), where the surgical interventions and recording sessions were carried out, and the R+D+I Linguistic Assistance Office at the UPV for their help in revising this paper. This research study was sponsored by the Ministerio de Ciencia y Tecnologia de Espana (TEC2007-64278) and by the Universidad Politecnica de Valencia, as part of a UPV research and development Grant Programme.Ye Lin, Y.; Garcia Casado, FJ.; Prats Boluda, G.; Ponce, JL.; Martínez De Juan, JL. (2009). Enhancement of the non-invasive electroenterogram to identify intestinal pacemaker activity. PHYSIOLOGICAL MEASUREMENT. 30(9):885-902. https://doi.org/10.1088/0967-3334/30/9/002S885902309Amaris, M. A., Sanmiguel, C. P., Sadowski, D. C., Bowes, K. L., & Mintchev, M. P. (2002). Digestive Diseases and Sciences, 47(11), 2480-2485. doi:10.1023/a:1020503908304Bass, P., & Wiley, J. N. (1965). Electrical and extraluminal contractile-force activity of the duodenum of the dog. The American Journal of Digestive Diseases, 10(3), 183-200. doi:10.1007/bf02233747Bradshaw, L. A., Allos, S. H., Wikswo, J. P., & Richards, W. O. (1997). Correlation and comparison of magnetic and electric detection of small intestinal electrical activity. American Journal of Physiology-Gastrointestinal and Liver Physiology, 272(5), G1159-G1167. doi:10.1152/ajpgi.1997.272.5.g1159Camilleri, M., Hasler, W. L., Parkman, H. P., Quigley, E. M. M., & Soffer, E. (1998). Measurement of gastrointestinal motility in the GI laboratory. Gastroenterology, 115(3), 747-762. doi:10.1016/s0016-5085(98)70155-6Chen, J. D. Z., & Lin, Z. (1993). Adaptive cancellation of the respiratory artifact in surface recording of small intestinal electrical activity. Computers in Biology and Medicine, 23(6), 497-509. doi:10.1016/0010-4825(93)90097-kChen, J., & McCallum, R. W. (1991). Electrogastrography: measuremnt, analysis and prospective applications. Medical & Biological Engineering & Computing, 29(4), 339-350. doi:10.1007/bf02441653Chen, J. D. Z., Schirmer, B. D., & McCallum, R. W. (1993). Measurement of electrical activity of the human small intestine using surface electrodes. IEEE Transactions on Biomedical Engineering, 40(6), 598-602. doi:10.1109/10.237682Garcia-Casado, J., Martinez-de-Juan, J. L., & Ponce, J. L. (2005). Noninvasive Measurement and Analysis of Intestinal Myoelectrical Activity Using Surface Electrodes. IEEE Transactions on Biomedical Engineering, 52(6), 983-991. doi:10.1109/tbme.2005.846730Gordon, A. D. (1987). A Review of Hierarchical Classification. Journal of the Royal Statistical Society. Series A (General), 150(2), 119. doi:10.2307/2981629Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., … Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903-995. doi:10.1098/rspa.1998.0193Irimia, A., & Bradshaw, L. A. (2005). Artifact reduction in magnetogastrography using fast independent component analysis. Physiological Measurement, 26(6), 1059-1073. doi:10.1088/0967-3334/26/6/015Lammers, W. J. E. P., & Stephen, B. (2008). Origin and propagation of individual slow waves along the intact feline small intestine. Experimental Physiology, 93(3), 334-346. doi:10.1113/expphysiol.2007.039180Liang, H. (2001). Adaptive independent component analysis of multichannel electrogastrograms. Medical Engineering & Physics, 23(2), 91-97. doi:10.1016/s1350-4533(01)00019-4Liang, J., Cheung, J. Y., & Chen, J. D. Z. (1997). Detection and deletion of motion artifacts in electrogastrogram using feature analysis and neural networks. Annals of Biomedical Engineering, 25(5), 850-857. doi:10.1007/bf02684169Liang, H., Lin, Z., & McCallum, R. W. (2000). Artifact reduction in electrogastrogram based on empirical mode decomposition method. Medical & Biological Engineering & Computing, 38(1), 35-41. doi:10.1007/bf02344686Zhi-Yue Lin, Chen, Z., & Jian De. (1994). Time-frequency representation of the electrogastrogram-application of the exponential distribution. IEEE Transactions on Biomedical Engineering, 41(3), 267-275. doi:10.1109/10.284945Lin, Z. Y., & Chen, J. D. Z. (1994). Recursive running DCT algorithm and its application in adaptive filtering of surface electrical recording of small intestine. Medical & Biological Engineering & Computing, 32(3), 317-322. doi:10.1007/bf02512529Lin, Z., & Chen, J. D. Z. (1995). Comparison of three running spectral analysis methods for electrogastrographic signals. Medical & Biological Engineering & Computing, 33(4), 596-604. doi:10.1007/bf02522520Maestri, R., Pinna, G. D., Porta, A., Balocchi, R., Sassi, R., Signorini, M. G., … Raczak, G. (2007). Assessing nonlinear properties of heart rate variability from short-term recordings: are these measurements reliable? Physiological Measurement, 28(9), 1067-1077. doi:10.1088/0967-3334/28/9/008Martinez-de-Juan, J. ., Saiz, J., Meseguer, M., & Ponce, J. . (2000). Small bowel motility: relationship between smooth muscle contraction and electroenterogram signal. Medical Engineering & Physics, 22(3), 189-199. doi:10.1016/s1350-4533(00)00032-1Mintchev, M. P., Kingma, Y. J., & Bowes, K. L. (1993). Accuracy of cutaneous recordings of gastric electrical activity. Gastroenterology, 104(5), 1273-1280. doi:10.1016/0016-5085(93)90334-9Prats-Boluda, G., Garcia-Casado, J., Martinez-de-Juan, J. L., & Ponce, J. L. (2007). Identification of the slow wave component of the electroenterogram from Laplacian abdominal surface recordings in humans. Physiological Measurement, 28(9), 1115-1133. doi:10.1088/0967-3334/28/9/012Quigley, E. M. M. (1996). GASTRIC AND SMALL INTESTINAL MOTILITY IN HEALTH AND DISEASE. Gastroenterology Clinics of North America, 25(1), 113-145. doi:10.1016/s0889-8553(05)70368-xSeidel, S. A., Bradshaw, L. A., Ladipo, J. K., Wikswo, J. P., & Richards, W. O. (1999). Noninvasive detection of ischemic bowel. Journal of Vascular Surgery, 30(2), 309-319. doi:10.1016/s0741-5214(99)70142-4Tomomasa, T., Morikawa, A., Sandler, R. H., Mansy, H. A., Koneko, H., Masahiko, T., … Itoh, Z. (1999). Gastrointestinal Sounds and Migrating Motor Complex in Fasted Humans. American Journal of Gastroenterology, 94(2), 374-381. doi:10.1111/j.1572-0241.1999.00862.xWang, Z. S., Cheung, J. Y., & Chen, J. D. Z. (1999). Blind separation of multichannel electrogastrograms using independent component analysis based on a neural network. Medical & Biological Engineering & Computing, 37(1), 80-86. doi:10.1007/bf0251327

    Active flexible concentric ring electrode for non-invasive surface bioelectrical recordings

    Full text link
    Bioelectrical surface recordings are usually performed by unipolar or bipolar disc electrodes even though they entail the serious disadvantage of having poor spatial resolution. Concentric ring electrodes give improved spatial resolution, although this type of electrode has so far only been implemented in rigid substrates and as they are not adapted to the curvature of the recording surface may provide discomfort to the patient. Moreover, the signals recorded by these electrodes are usually lower in amplitude than conventional disc electrodes. The aim of this work was thus to develop and test a new modular active sensor made up of concentric ring electrodes printed on a flexible substrate by thick-film technology together with a reusable battery-powered signal-conditioning circuit. Simultaneous ECG recording with both flexible and rigid concentric ring electrodes was carried out on ten healthy volunteers at rest and in motion. The results show that flexible concentric ring electrodes not only present lower skin electrode contact impedance and lower baseline wander than rigid electrodes but are also less sensitive to interference and motion artefacts. We believe these electrodes, which allow bioelectric signals to be acquired non-invasively with better spatial resolution than conventional disc electrodes, to be a step forward in the development of new monitoring systems based on Laplacian potential recordings.This research was supported in part by the Ministerio de Ciencia y Tecnologia de Espana (TEC2010-16945) and by the Universitat Politecnica de Valencia (PAID 2009/10-2298). The proof-reading of this paper was funded by the Universitat Politecnica de Valencia, Spain.Prats Boluda, G.; Ye Lin, Y.; García Breijo, E.; Ibáñez Civera, FJ.; Garcia Casado, FJ. (2012). Active flexible concentric ring electrode for non-invasive surface bioelectrical recordings. Measurement Science and Technology. 23(12):1-10. https://doi.org/10.1088/0957-0233/23/12/125703S1102312Malmivuo, J., & Plonsey, R. (1995). BioelectromagnetismPrinciples and Applications of Bioelectric and Biomagnetic Fields. doi:10.1093/acprof:oso/9780195058239.001.0001Gevins, A. (1989). Dynamic functional topography of cognitive tasks. Brain Topography, 2(1-2), 37-56. doi:10.1007/bf01128842Bradshaw, L. A., Wijesinghe, R. S., & Wikswo, Jr., J. P. (2001). Spatial Filter Approach for Comparison of the Forward and Inverse Problems of Electroencephalography and Magnetoencephalography. Annals of Biomedical Engineering, 29(3), 214-226. doi:10.1114/1.1352641Bradshaw, L. A., Richards, W. O., & Wikswo, J. P. (2001). Volume conductor effects on the spatial resolution of magnetic fields and electric potentials from gastrointestinal electrical activity. Medical & Biological Engineering & Computing, 39(1), 35-43. doi:10.1007/bf02345264Garcia-Casado, J., Martinez-de-Juan, J. L., & Ponce, J. L. (2005). Noninvasive Measurement and Analysis of Intestinal Myoelectrical Activity Using Surface Electrodes. IEEE Transactions on Biomedical Engineering, 52(6), 983-991. doi:10.1109/tbme.2005.846730SippensGroenewegen, A., Peeters, H. A. P., Jessurun, E. R., Linnenbank, A. C., Robles de Medina, E. O., Lesh, M. D., & van Hemel, N. M. (1998). Body Surface Mapping During Pacing at Multiple Sites in the Human Atrium. Circulation, 97(4), 369-380. doi:10.1161/01.cir.97.4.369Lian, J., Li, G., Cheng, J., Avitall, B., & He, B. (2002). Body surface Laplacian mapping of atrial depolarization in healthy human subjects. Medical & Biological Engineering & Computing, 40(6), 650-659. doi:10.1007/bf02345304Wu, D., Tsai, H. C., & He, B. (1999). On the Estimation of the Laplacian Electrocardiogram during Ventricular Activation. Annals of Biomedical Engineering, 27(6), 731-745. doi:10.1114/1.224Koka, K., & Besio, W. G. (2007). Improvement of spatial selectivity and decrease of mutual information of tri-polar concentric ring electrodes. Journal of Neuroscience Methods, 165(2), 216-222. doi:10.1016/j.jneumeth.2007.06.007Prats-Boluda, G., Garcia-Casado, J., Martinez-de-Juan, J. L., & Ye-Lin, Y. (2011). Active concentric ring electrode for non-invasive detection of intestinal myoelectric signals. Medical Engineering & Physics, 33(4), 446-455. doi:10.1016/j.medengphy.2010.11.009He, B., & Cohen, R. J. (1992). Body surface Laplacian mapping of cardiac electrical activity. The American Journal of Cardiology, 70(20), 1617-1620. doi:10.1016/0002-9149(92)90471-aBesio, W., Aakula, R., Koka, K., & Dai, W. (2006). Development of a Tri-polar Concentric Ring Electrode for Acquiring Accurate Laplacian Body Surface Potentials. Annals of Biomedical Engineering, 34(3), 426-435. doi:10.1007/s10439-005-9054-8Ye-Lin, Y., Garcia-Casado, J., Prats-Boluda, G., Ponce, J. L., & Martinez-de-Juan, J. L. (2009). Enhancement of the non-invasive electroenterogram to identify intestinal pacemaker activity. Physiological Measurement, 30(9), 885-902. doi:10.1088/0967-3334/30/9/002Hjorth, B. (1975). An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalography and Clinical Neurophysiology, 39(5), 526-530. doi:10.1016/0013-4694(75)90056-5Perrin, F., Pernier, J., Bertnard, O., Giard, M. ., & Echallier, J. . (1987). Mapping of scalp potentials by surface spline interpolation. Electroencephalography and Clinical Neurophysiology, 66(1), 75-81. doi:10.1016/0013-4694(87)90141-6Nunez, P. L., & Westdorp, A. F. (1994). The surface laplacian, high resolution EEG and controversies. Brain Topography, 6(3), 221-226. doi:10.1007/bf01187712Srinivasan, R., Nunez, P. L., Tucker, D. M., Silberstein, R. B., & Cadusch, P. J. (1996). Spatial sampling and filtering of EEG with spline Laplacians to estimate cortical potentials. Brain Topography, 8(4), 355-366. doi:10.1007/bf01186911Farina, D., & Cescon, C. (2001). Concentric-ring electrode systems for noninvasive detection of single motor unit activity. IEEE Transactions on Biomedical Engineering, 48(11), 1326-1334. doi:10.1109/10.959328G. Besio, C. C. Lu, P. P. Tarjan, W. (2001). A Feasibility Study for Body Surface Cardiac Propagation Maps of Humans from Laplacian Moments of Activation. Electromagnetics, 21(7-8), 621-632. doi:10.1080/027263401752246243Li, G., Wang, Y., Lin, L., Jiang, W., Wang, L. L., Lu, S. C.-Y., & Besio, W. G. (2005). Active Laplacian electrode for the data-acquisition system of EHG. Journal of Physics: Conference Series, 13, 330-335. doi:10.1088/1742-6596/13/1/077Engel, J., Chen, J., & Liu, C. (2003). Development of polyimide flexible tactile sensor skin. Journal of Micromechanics and Microengineering, 13(3), 359-366. doi:10.1088/0960-1317/13/3/302Papakostas, T. V., Lima, J., & Lowe, M. (s. f.). A large area force sensor for smart skin applications. Proceedings of IEEE Sensors. doi:10.1109/icsens.2002.1037366Stieglitz, T. (2001). Flexible biomedical microdevices with double-sided electrode arrangements for neural applications. Sensors and Actuators A: Physical, 90(3), 203-211. doi:10.1016/s0924-4247(01)00520-9Hamilton, P. S., & Tompkins, W. J. (1986). Quantitative Investigation of QRS Detection Rules Using the MIT/BIH Arrhythmia Database. IEEE Transactions on Biomedical Engineering, BME-33(12), 1157-1165. doi:10.1109/tbme.1986.325695Besio, W., & Chen, T. (2007). Tripolar Laplacian electrocardiogram and moment of activation isochronal mapping. Physiological Measurement, 28(5), 515-529. doi:10.1088/0967-3334/28/5/006Besio, G., Koka, K., Aakula, R., & Weizhong Dai. (2006). Tri-polar concentric ring electrode development for Laplacian electroencephalography. IEEE Transactions on Biomedical Engineering, 53(5), 926-933. doi:10.1109/tbme.2005.863887Setti, L., Fraleoni-Morgera, A., Ballarin, B., Filippini, A., Frascaro, D., & Piana, C. (2005). An amperometric glucose biosensor prototype fabricated by thermal inkjet printing. Biosensors and Bioelectronics, 20(10), 2019-2026. doi:10.1016/j.bios.2004.09.022Reddy, A. S. G., Narakathu, B. B., Atashbar, M. Z., Rebros, M., Rebrosova, E., & Joyce, M. K. (2011). Gravure Printed Electrochemical Biosensor. Procedia Engineering, 25, 956-959. doi:10.1016/j.proeng.2011.12.235Gruetzmann, A., Hansen, S., & Müller, J. (2007). Novel dry electrodes for ECG monitoring. Physiological Measurement, 28(11), 1375-1390. doi:10.1088/0967-3334/28/11/005LI, G., LIAN, J., SALLA, P., CHENG, J., RAMACHANDRA, I., SHAH, P., … HE, B. (2003). Body Surface Laplacian Electrocardiogram of Ventricular Depolarization in Normal Human Subjects. Journal of Cardiovascular Electrophysiology, 14(1), 16-27. doi:10.1046/j.1540-8167.2003.02199.

    Comparison of electrohysterogram signal measured by surface electrodes with different designs: A computational study with dipole band and abdomen models

    Get PDF
    Non-invasive measurement of uterine activity using electrohysterogram (EHG) surface electrodes has been attempted to monitor uterine contraction. This study aimed to computationally compare the performance of acquiring EHG signals using monopolar electrode and three types of Laplacian concentric ring electrodes (bipolar, quasi-bipolar and tri-polar). With the implementation of dipole band model and abdomen model, the performances of four electrodes in terms of the local sensitivity were quantifed by potential attenuation. Furthermore, the efects of fat and muscle thickness on potential attenuation were evaluated using the bipolar and tri-polar electrodes with diferent radius. The results showed that all the four types of electrodes detected the simulated EHG signals with consistency. That the bipolar and tri-polar electrodes had greater attenuations than the others, and the shorter distance between the origin and location of dipole band at 20dB attenuation, indicating that they had relatively better local sensitivity. In addition, ANOVA analysis showed that, for all the electrodes with diferent outer ring radius, the efects of fat and muscle on potential attenuation were signifcant (all p<0.01). It is therefore concluded that the bipolar and tri-polar electrodes had higher local sensitivity than the others, indicating that they can be applied to detect EHG efectively

    Characterization of the effects of Atosiban on uterine electromyograms recorded in women with threatened preterm labor

    Full text link
    [EN] Although research studies using electrohysterography on women without tocolytic therapy have shown its potential for preterm birth diagnosis, tocolytics are usually administered in emergency rooms at the first sign of threatened preterm labor (TPL). Information on the uterine response during tocolytic treatment could prove useful for the development of tools able to predict true preterm deliveries under normal clinical conditions. The aim of this study was thus to analyze the effects of Atosiban on Electrohysterogram (EHG) parameters and to compare its effects on women who delivered preterm (WDP) and at term (WDT). Electrohysterograms recorded in different Atosiban therapy stages (before, during and after drug administration) on 40 WDT and 27 WDP were analyzed by computing linear, and non-linear EHG parameters. Results reveal that Atosiban does not greatly affect the EHG signal amplitude, but does modify its spectral content and reduces the energy associated with the fast wave high component in both WDP and WDT, with a faster response in the latter. EHG signal complexity remained constant in WDT, while it increased in WDP until it reached similar values to WDT during Atosiban treatment. The spectral and complexity parameters were able to separate (p < 0.05) WDT and WDP prior to and during tocolytic treatment and before and after treatment, respectively. The results pave the way for developing better and more reliable medical decision support systems based on EHG for preterm delivery prediction in TPL women in clinical scenarios.This work received financial support from the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (DPI2015-68397-R), VLC/Campus (UPV-FE-2018-B03) and by Conselleria de Educación, Investigación, Cultura y Deporte, Generalitat Valenciana (GV/2018/104).Mas-Cabo, J.; Prats-Boluda, G.; Ye Lin, Y.; Alberola Rubio, J.; Perales, A.; Garcia-Casado, J. (2019). Characterization of the effects of Atosiban on uterine electromyograms recorded in women with threatened preterm labor. Biomedical Signal Processing and Control. 52:198-205. https://doi.org/10.1016/j.bspc.2019.04.001S1982055

    Uterine electromyography for discrimination of labor imminence in women with threatened preterm labor under tocolytic treatment

    Full text link
    [EN] As one of the main aims of obstetrics is to be able to detect imminent delivery in patients with threatened preterm labor, the techniques currently used in clinical practice have serious limitations in this respect. The electrohysterogram (EHG) has now emerged as an alternative technique, providing relevant information about labor onset when recorded in controlled checkups without administration of tocolytic drugs. The studies published to date mainly focus on EHG-burst analysis and, to a lesser extent, on whole EHG window analysis. The study described here assessed the ability of EHG signals to discriminate imminent labor (The ability of EHG recordings to predict imminent labor (<7days) was analyzed in preterm threatened patients undergoing tocolytic therapies by means of EHG-burst and whole EHG window analysis. The non-linear features were found to have better performance than the temporal and spectral parameters in separating women who delivered in less than 7days from those who did not.Mas-Cabo, J.; Prats-Boluda, G.; Perales Marín, AJ.; Garcia-Casado, J.; Alberola Rubio, J.; Ye Lin, Y. (2019). Uterine electromyography for discrimination of labor imminence in women with threatened preterm labor under tocolytic treatment. Medical & Biological Engineering & Computing. 57:401-411. https://doi.org/10.1007/s11517-018-1888-yS40141157Aboy M, Cuesta-Frau D, Austin D, Micó-Tormos P (2007) Characterization of sample entropy in the context of biomedical signal analysis. Conf Proc IEEE Eng Med Biol Soc:5942–5945. https://doi.org/10.1109/IEMBS.2007.4353701Aboy M, Hornero R, Abásolo D, Álvarez D (2006) Interpretation of the Lempel-Ziv complexity measure in the context of biomedical signal analysis. IEEE Trans Biomed Eng 53:2282–2288. https://doi.org/10.1109/TBME.2006.883696Chkeir A, Fleury MJ, Karlsson B, Hassan M, Marque C (2013) Patterns of electrical activity synchronization in the pregnant rat uterus. Biomed 3:140–144. https://doi.org/10.1016/j.biomed.2013.04.007Crandon AJ (1979) Maternal anxiety and neonatal wellbeing. J Psychosom Res 23:113–115. https://doi.org/10.1016/0022-3999(79)90015-1Devedeux D, Marque C, Mansour S, Germain G, Duchêne J (1993) Uterine electromyography: a critical review. Am J Obstet Gynecol 169:1636–1653. https://doi.org/10.1016/0002-9378(93)90456-SFele-Žorž G, Kavšek G, Novak-Antolič Ž, Jager F (2008) A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Med Biol Eng Comput 46:911–922. https://doi.org/10.1007/s11517-008-0350-yFergus P, Cheung P, Hussain A, al-Jumeily D, Dobbins C, Iram S (2013) Prediction of preterm deliveries from EHG signals using machine learning. PLoS One 8:e77154. https://doi.org/10.1371/journal.pone.0077154Garfield RE, Maner WL (2006) Biophysical methods of prediction and prevention of preterm labor: uterine electromyography and cervical light-induced fluorescence—new obstetrical diagnostic techniques. In: Preterm Birth pp 131–144Garfield RE, Maner WL (2007) Physiology and electrical activity of uterine contractions. Semin Cell Dev Biol 18:289–295. https://doi.org/10.1016/j.semcdb.2007.05.004Garfield RE, Maner WL, MacKay LB et al (2005) Comparing uterine electromyography activity of antepartum patients versus term labor patients. Am J Obstet Gynecol 193:23–29. https://doi.org/10.1016/j.ajog.2005.01.050Goldenberg RL, Culhane JF, Iams JD, Romero R (2008) Epidemiology and causes of preterm birth. Lancet 371:75–84. https://doi.org/10.1016/S0140-6736(08)60074-4American College of Obstetricians and Gynecologists and Committee on Practice Bulletins— Obstetrics (2012) Practice bulletin no. 127. Obstet Gynecol 119(6):1308–1317.Hadar E, Biron-Shental T, Gavish O, Raban O, Yogev Y (2015) A comparison between electrical uterine monitor, tocodynamometer and intra uterine pressure catheter for uterine activity in labor. J Matern Neonatal Med 28:1367–1374. https://doi.org/10.3109/14767058.2014.954539Hans P, Dewandre P, Brichant JF, Bonhomme V (2005) Comparative effects of ketamine on Bispectral Index and spectral entropy of the electroencephalogram under sevoflurane anaesthesia. Br J Anaesth 94:336–340. https://doi.org/10.1093/bja/aei047Hassan M, Terrien J, Marque C, Karlsson B (2011) Comparison between approximate entropy, correntropy and time reversibility: application to uterine electromyogram signals. Med Eng Phys 33:980–986. https://doi.org/10.1016/j.medengphy.2011.03.010Hassan M, Terrien J, Muszynski C et al (2013) Better pregnancy monitoring using nonlinear correlation analysis of external uterine electromyography. IEEE Trans Biomed Eng 60:1160–1166. https://doi.org/10.1109/TBME.2012.2229279Horoba K, Jezewski J, Matonia A, Wrobel J, Czabanski R, Jezewski M (2016) Early predicting a risk of preterm labour by analysis of antepartum electrohysterograhic signals. Biocybern Biomed Eng 36:574–583. https://doi.org/10.1016/j.bbe.2016.06.004Lawn JE, Wilczynska-Ketende K, Cousens SN (2006) Estimating the causes of 4 million neonatal deaths in the year 2000. Int J Epidemiol 35:706–718. https://doi.org/10.1093/ije/dyl043Lemancewicz A, Borowska M, Kuć P, Jasińska E, Laudański P, Laudański T, Oczeretko E (2016) Early diagnosis of threatened premature labor by electrohysterographic recordings—the use of digital signal processing. Biocybern Biomed Eng 36:302–307. https://doi.org/10.1016/j.bbe.2015.11.005M L WLM, LR C (2012) Noninvasive uterine electromyography for prediction of preterm delivery. Am J Obstet Gynecol 204:1–20. https://doi.org/10.1016/j.ajog.2010.09.024.NoninvasiveManer WL, Garfield RE (2007) Identification of human term and preterm labor using artificial neural networks on uterine electromyography data. Ann Biomed Eng 35:465–473. https://doi.org/10.1007/s10439-006-9248-8Maner WL, Garfield RE, Maul H, Olson G, Saade G (2003) Predicting term and preterm delivery with transabdominal uterine electromyography. Obstet Gynecol 101:1254–1260. https://doi.org/10.1016/S0029-7844(03)00341-7Marque C, Gondry J (1999) Use of the electrohysterogram signal for characterization of contractions during pregnancy. IEEE Trans Biomed Eng 46:1222–1229Maul H, Maner WL, Olson G, Saade GR, Garfield RE (2004) Non-invasive transabdominal uterine electromyography correlates with the strength of intrauterine pressure and is predictive of labor and delivery. J Matern Fetal Neonatal Med 15:297–301Mischi M, Chen C, Ignatenko T, de Lau H, Ding B, Oei SGG, Rabotti C (2018) Dedicated entropy measures for early assessment of pregnancy progression from single-channel electrohysterography. IEEE Trans Biomed Eng 65:875–884. https://doi.org/10.1109/TBME.2017.2723933Most O, Langer O, Kerner R, Ben David G, Calderon I (2008) Can myometrial electrical activity identify patients in preterm labor? Am J Obstet Gynecol 199:378. https://doi.org/10.1016/j.ajog.2008.08.003Petrou S (2005) The economic consequences of preterm birth during the first 10 years of life. BJOG 112:10–15. https://doi.org/10.1111/j.1471-0528.2005.00577.xRabotti C, Sammali F, Kuijsters N, et al (2015) Analysis of uterine activity in nonpregnant women by electrohysterography: a feasibility study. In: Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS pp 5916–5919Schlembach D, Maner WL, Garfield RE, Maul H (2009) Monitoring the progress of pregnancy and labor using electromyography. Eur J Obstet Gynecol Reprod Biol 144:2–8. https://doi.org/10.1016/j.ejogrb.2009.02.016Sikora J, Matonia A, Czabański R et al (2011) Recognition of premature threatening labour symptoms from bioelectrical uterine activity signals. Arch Perinat Med 17:97–103Vinken MPGC, Rabotti C, Mischi M, van Laar JOEH, Oei SG (2010) Nifedipine-induced changes in the electrohysterogram of preterm contractions: feasibility in clinical practice. Obstet Gynecol Int 2010:325635. https://doi.org/10.1155/2010/325635Vrhovec J, Lebar AM (2012) An uterine electromyographic activity as a measure of labor progression. Appl EMG Clin Sport Med 243–268. doi: https://doi.org/10.5772/25526Vrhovec J, Macek-Lebar A, Rudel D (2007) Evaluating uterine electrohysterogram with entropy. 11th Mediterr Conf Med Biomed Eng Comput 144–147. https://doi.org/10.1007/978-3-540-73044-6_36Ye-Lin Y, Bueno-Barrachina JM, Prats-boluda G, Rodriguez de Sanabria R, Garcia-Casado J (2017) Wireless sensor node for non-invasive high precision electrocardiographic signal acquisition based on a multi-ring electrode. Measurement 97:195–202. https://doi.org/10.1016/J.MEASUREMENT.2016.11.009Ye-Lin Y, Garcia-Casado J, Prats-Boluda G, Alberola-Rubio J, Perales A (2014) Automatic identification of motion artifacts in EHG recording for robust analysis of uterine contractions. Comput Math Methods Med 2014:1–11. https://doi.org/10.1155/2014/470786Zhang XS, Roy RJ, Jensen EW (2001) EEG complexity as a measure of depth of anesthesia for patients. IEEE Trans Biomed Eng 48:1424–1433. https://doi.org/10.1109/10.96660
    corecore