388 research outputs found

    Trade-offs associated with dietary specialization in corallivorous butterflyfishes (Chaetodontidae: Chaetodon )

    Get PDF
    Author Posting. © Springer, 2007. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Behavioral Ecology and Sociobiology 62 (2008) 989-994, doi:10.1007/s00265-007-0526-8.Increasing dietary specialisation is an inherently risky strategy because it increases a species’ vulnerability to resource depletion. However, risks associated with dietary specialisation may be offset by increased performance when feeding on preferred prey. Though rarely demonstrated, highly specialised species are expected to outperform generalists when feeding on their preferred prey, whereas generalists are predicted to have more similar performance across a range of different prey. To test this theory, we compared growth rates of two obligate coral-feeding butterflyfishes (Chaetodon trifascialis and C. plebeius) maintained on exclusive diets of preferred versus non-preferred prey. In the field, C. trifascialis was the most specialised species, feeding almost exclusively on just one coral species, Acropora hyacinthus. Chaetodon plebeius meanwhile, was much less specialised, but fed predominantly on Pocillopora damicornis. During growth experiments, C. trifascialis grew fastest when feeding on A. hyacinthus and did not grow at all when feeding on less preferred prey (P. damicornis and Porites cylindrica). Chaetodon plebeius performed equally well on both A. hyacinthus and P. damicornis (its preferred prey), but performed poorly when feeding on P. cylindrica. Both butterflyfishes select coral species that maximise juvenile growth, but contrary to expectations, the more specialised species (C. trifascialis) did not outperform the generalist (C. plebeius) when both consumed their preferred prey. Increased dietary specialisation, therefore, appears to be a questionable strategy as there was no evidence of any increased benefits to offset increases in susceptibility to disturbance.This work was supported by a National Science Foundation (USA) Graduate Research Fellowship to ML

    Interactive effects of endogenous and exogenous nutrition on larval development for crown-cf-thorns starfish

    Get PDF
    Outbreaks of crown-of-thorns starfish are often attributed to step-changes in larval survivorship following anomalous increases in nutrients and food availability. However, larval growth and development is also influenced by the nutritional condition of spawning females, such that maternal provisioning may offset limitations imposed by limited access to exogenous sources of nutrients during the formative stages of larval development. This study examined the individual, additive, and interactive effects of endogenous (maternal diet: Acropora, Porites, mixed, and starved) and exogenous (larval diet: high concentration at 104 cells·mL−1, low concentration at 103 algal cells·mL−1, and starved) nutrition on the survival, growth, morphology, and development of larvae of the crown-of-thorns starfish. Female starfish on Acropora and mixed diet produced bigger oocytes compared to Porites-fed and starved treatments. Using oocyte size as a proxy for maternal provisioning, endogenous reserves in the oocyte had a strong influence on initial larval survival and development. This suggests that maternal reserves can delay the onset of obligate exogenous food acquisition and allow larvae to endure prolonged periods of poor environmental nutritive conditions or starvation. The influence of exogenous nutrition became more prominent in later stages, whereby none of the starved larvae reached the mid-to-late brachiolaria stage 16 days after the onset of the ability to feed. There was no significant difference in the survival, development, and competency of larvae between high and low food treatments. Under low algal food conditions, larvae compensate by increasing the length of ciliated feeding bands in relation to the maximum length and width, which improve food capture and feeding efficiency. However, the effects of endogenous nutrition persisted in the later developmental stages, as larvae from starved females were unable to develop larger feeding structures in response to food-limiting conditions. Phenotypic plasticity influenced by endogenous provisions and in response to exogenous food availability may be an important strategy in boosting the reproductive success of crown-of-thorns starfish, leading to population outbreaks

    Size‑specific recolonization success by coral‑dwelling damselfishes moderates resilience to habitat loss

    Get PDF
    Increasing degradation of coral reef ecosystems and specifically, loss of corals is causing significant and widespread declines in the abundance of coral reef fishes, but the proximate cause(s) of these declines are largely unknown. Here, we examine specific responses to host coral mortality for three species of coral-dwelling damselfishes (Dascyllus aruanus, D. reticulatus, and Pomacentrus moluccensis), explicitly testing whether these fishes can successfully move and recolonize nearby coral hosts. Responses of fishes to localized coral loss was studied during population irruptions of coral feeding crown-of-thorns starfish, where starfish consumed 29 (34%) out of 85 coral colonies, of which 25 (86%) were occupied by coral-dwelling damselfishes. Damselfishes were not tagged or individually recognizable, but changes in the colonization of different coral hosts was assessed by carefully assessing the number and size of fishes on every available coral colony. Most damselfishes (> 90%) vacated dead coral hosts within 5 days, and either disappeared entirely (presumed dead) or relocated to nearby coral hosts. Displaced fishes only ever colonized corals already occupied by other coraldwelling damselfishes (mostly conspecifics) and colonization success was strongly size-dependent. Despite movement of damselfishes to surviving corals, the local abundance of coral-dependent damselfishes declined in approximate accordance with the proportional loss of coral habitat. These results suggest that even if alternative coral hosts are locally abundant, there are significant biological constraints on movement of coral-dwelling damselfishes and recolonization of alternative coral habitats, such that localized persistence of habitat patches during moderate or patchy disturbances do not necessarily provide resilience against overall habitat loss

    Variation in incidence and severity of injuries among crown-of-thorns starfish (Acanthaster cf. solaris) on Australia's Great Barrier Reef

    Get PDF
    Despite the presence of numerous sharp poisonous spines, adult crown-of-thorns starfish (CoTS) are vulnerable to predation, though the importance and rates of predation are generally unknown. This study explores variation in the incidence and severity of injuries for Acanthaster cf. solaris from Australia's Great Barrier Reef. The major cause of such injuries is presumed to be sub-lethal predation such that the incidence of injuries may provide a proxy for overall predation and mortality rates. A total of 3846 Acanthaster cf. solaris were sampled across 19 reefs, of which 1955 (50.83%) were injured. Both the incidence and severity of injuries decreased with increasing body size. For small CoTS (60% of individuals had injuries, and a mean 20.7% of arms (±2.9 SE) were affected. By comparison, 450 mm total diameter) CoTS had injuries, and, among those, only 8.3% of arms (±1.7 SE) were injured. The incidence of injuries varied greatly among reefs but was unaffected by the regulations of local fisheries

    A large predatory reef fish species moderates feeding and activity patterns in response to seasonal and latitudinal temperature variation

    Get PDF
    Climate-driven increases in ocean temperatures are expected to affect the metabolic requirements of marine species substantially. To mitigate the impacts of increasing temperatures in the short-term, it may be necessary for ectothermic organisms to alter their foraging behaviour and activity. Herein, we investigate seasonal variation in foraging behaviour and activity of latitudinally distinct populations of a large coral reef predator, the common coral trout, Plectropomus leopardus, from the Great Barrier Reef, Australia. P. leopardus exhibited increased foraging frequency in summer versus winter time, irrespective of latitude, however, foraging frequency substantially declined at water temperatures >30 degrees C. Foraging frequency also decreased with body size but there was no interaction with temperature. Activity patterns were directly correlated with water temperature; during summer, the low-latitude population of P. leopardus spent up to 62% of their time inactive, compared with 43% for the high-latitude population. The impact of water temperature on activity patterns was greatest for larger individuals. These results show that P. leopardus moderate their foraging behaviour and activity according to changes in ambient temperatures. It seems likely that increasing ocean temperatures may impose significant constraints on the capacity of large-bodied fishes to obtain sufficient prey resources while simultaneously conserving energy

    Bleaching susceptibility and mortality among corals with differing growth forms

    Get PDF
    Differences in bleaching susceptibility and mortality are apparent among coral species, and have been variously ascribed to differences in physiology and morphology, in particular overall growth form (e.g., branching versus massive corals). However, coral morphology is highly confounded with taxonomy, and no studies have tested for differences in bleaching susceptibility among corals with varying morphology within (rather than between) coral families. For this study, data were compiled for bleaching susceptibility and mortality from 65 published studies that monitored coral health throughout the bleaching event. Overall patterns of bleaching susceptibility were significantly different among coral growth forms, whereby a much higher proportion of branching, tabular, and submassive corals bleached compared to encrusting, massive, and free-living corals. However, differences in bleaching susceptibility and mortality were not consistent among growth forms within families. Branching faviid species (e.g., Echinopora) had much lower incidence of bleaching compared to massive species, but the reverse was true for Acroporidae and Poritidae. Moreover, mortality was markedly different amongst growth forms within families, such that massive Acroporidae (e.g. Montipora) suffered highest mortality when compared to Faviidae and Poritidae, but branching Acroporidae suffered lowest mortality compared to branching Faviidae and Poritidae. Our data suggest that generalities about the susceptibility of branching versus massive corals (and among other major growth forms) arise at least in part because certain growth forms are over-represented by highly susceptible coral taxa (e.g., Acropora) or perhaps because branching corals generally maintain higher dominance than massive corals

    Bleaching susceptibility of aquarium corals collected across northern Australia

    Get PDF
    Abstract There are a wide range of Scleractinian corals that are collected for the global reef aquarium market, often from non-reefal environments. The sustainability of coral harvesting is potentially threatened by increasing anthro- pogenic disturbances and climate change, though it is unknown to what extent many commonly harvested corals are susceptible to environmental change, or actually bleach during marine heatwaves. In this study, we experimentally tested the temperature sensitivity and bleaching suscepti- bility of six coral species (Homophyllia australis, Micro- mussa lordhowensis, Catalaphyllia jardinei, Trachyphyllia geoffroyi, Duncanopsammia axifuga, and Euphyllia glab- rescens), which are important components of the aquarium coral fisheries across northern Australia, in Western Aus- tralia, the Northern Territory, and/or Queensland. Inter- specific differences were evident in the temperature sensitivity and bleaching susceptibility among the study species. Homophyllia australis, and M. lordhowensis were found to be particularly susceptible to elevated temperatures, whereby all corals subjected to elevated temperatures died within the course of the experimental treatment (75 d). Catalaphyllia jardinei and E. glabrescens also exhibited significant increases in mortality when exposed to elevated temperatures, though some of the corals did survive, and C. jardinei mostly died only after exposure to elevated temperatures. The other species (T. geoffroyi and D. axifuga) exhibited marked bleaching when exposed to elevated temperatures, but mortality of these corals was similar to that of conspecifics held at ambient temperatures. This study highlights the potential for envi- ronmental change to impact the sustainability and viability of Australian coral harvest fisheries. More importantly, this study highlights the need for specific and targeted in situ monitoring for important stocks of coral fishery target species, to assess their vulnerability to fishery and fishery- independent effects

    Limited cross-shelf variation in the growth of three branching corals on Australia's Great Barrier Reef

    Get PDF
    Pronounced differences exist in the biodiversity and structure of coral reef assemblages with increasing distance from shore, which may be expected given marked cross-shelf gradients in environmental conditions. Cross-shelf variation in the abundance of coral reef organisms is likely to be caused, at least in part, by differences in demography (e.g., growth and survival), though this has rarely been tested. This study quantified growth of three distinct branching coral taxa (Acropora nasuta, Pocillopora spp. and Stylophora pistillata) at six locations on Australia's Great Barrier Reef (GBR), encompassing inshore, mid-shelf and outer-shelf reefs. Replicate colonies (0–15 colonies per species, per reef) were stained using Alizarin Red in December 2015 and retrieved one year later to quantify linear extension on replicate branches for each colony. Annual linear extension varied within and among coral taxa, with pronounced differences among reefs. For A. nasuta. and S. pistillata, growth rates were highest at one of the inshore reefs, Orpheus Island. However, inter-reef differences in linear extension were not explained by shelf position. Based on differences in skeletal density, which did vary according to shelf position, branching corals at the inshore sites may actually have higher rates of calcification compared to conspecifics on mid-and outer-shelf reefs. This study shows that growth of branching corals is not lower at inshore sites (and perhaps even higher) compared to sites at mid-shelf and outer reefs, despite generally higher levels of sedimentation and turbidity

    Using size-weight relationships to estimate biomass of heavily targeted aquarium corals by Australia’s coral harvest fisheries

    Get PDF
    Coral reefs are highly threatened environs subject to ongoing unprecedented degradation as a result of anthropogenic activities. Given the existential threat to coral reef ecosystems, extractive industries that make use of coral reef resources, are facing significant public and political pressure to quantify and justify their environmental impact. In Australia, hundreds of thousands of live scleractinian (hard) corals are harvested annually directly from the wild to supply the growing international marine aquarium trade. Many of the most popular and high value aquarium corals are believed to be slow growing, which would make them particularly vulnerable to over-fishing. Corals present a number of unique challenges for fisheries management, not least of which, is the marked variation in the size of corals, which may be harvested in whole or in part. This issue is further compounded because harvest limits are typically weight-based, but there is very limited information on the standing biomass of corals in targeted stocks. Herein, we describe size-weight relationships for some of Australia’s most heavily targeted coral species (Catalaphyllia jardinei, Duncanopsammia axifuga, Euphyllia glabrescens, Homophyllia cf. australis, Micromussa lordhowensis, Trachyphyllia geoffroyi), which allows estimation of standing biomass from transect surveys. This work represents an important first step in the development of ecologically sound management strategies by bridging the gap between catch reporting and stock assessments

    Age and growth of an outbreaking Acanthaster cf. solaris population within the Great Barrier Reef

    Get PDF
    Despite having been studied for more than 40 years, much about the basic life history of crown-of-thorns starfish (CoTS; Acanthaster spp.) remains poorly understood. Size at age-a key metric of productivity for any animal population-has yet to be clearly defined, primarily due to difficulties in obtaining validated ages and potentially indeterminate growth due to factors such as starvation; within-population variability is entirely unknown. Here we develop age and growth estimates for an outbreaking CoTS population in Australian waters by integrating prior information with data from CoTS collected from multiple outbreaking reefs. Age estimates were made from un-validated band counts of 2038 individual starfish. Results from our three-parameter von Bertalanffy Bayesian hierarchical model show that, under 2013-2014 outbreak conditions, CoTS on the GBR grew to a 349 ( 326, 380) mm (posterior median (95% uncertainty interval)) total diameter at a 0.54 (0.43, 0.66) intrinsic rate of increase. However, we also found substantial evidence (Delta DIC > 200) for inter-reef variability in both maximum size (SD 38 (19, 76)) and intrinsic rate of increase (SD 0.32 (0.20, 0.49)) within the CoTS outbreak initiation area. These results suggest that CoTS demography can vary widely with reef-scale environmental conditions, supporting location-based mechanisms for CoTS outbreaks generally. These findings should help improve population and metapopulation models of CoTS dynamics and better predict the potential damage they may cause in the future
    • …
    corecore