21 research outputs found
IFNAR1-Signalling Obstructs ICOS-mediated Humoral Immunity during Non-lethal Blood-Stage Plasmodium Infection
Funding: This work was funded by a Career Development Fellowship (1028634) and a project grant (GRNT1028641) awarded to AHa by the Australian National Health & Medical Research Council (NHMRC). IS was supported by The University of Queensland Centennial and IPRS Scholarships. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
Human Amniotic Epithelial Cell Transplantation Induces Markers of Alternative Macrophage Activation and Reduces Established Hepatic Fibrosis
Chronic hepatic inflammation from multiple etiologies leads to a fibrogenic response that can progress to cirrhosis and liver failure. Transplantation of human amniotic epithelial cells (hAEC) from term delivered placenta has been shown to decrease mild to moderate hepatic fibrosis in a murine model. To model advanced human liver disease and assess the efficacy of hAEC therapy, we transplanted hAEC in mice with advanced hepatic fibrosis. Immunocompetent C57BL/6 mice were administered carbon tetrachloride (CCl4) twice weekly resulting in bridging fibrosis by 12 weeks. hAEC (2×106) were infused via the tail vein at week 8 or weeks 8 and 10 (single and double dose, respectively). Human cells were detected in mouse liver four weeks after transplantation showing hAEC engraftment. CCl4 treated mice receiving single or double hAEC doses showed a significant but similar decrease in liver fibrosis area associated with decreased activation of collagen-producing hepatic stellate cells and decreased hepatic protein levels of the pro-fibrogenic cytokine, transforming growth factor-beta1. CCl4 administration caused hepatic T cell infiltration that decreased significantly following hAEC transplantation. Hepatic macrophages play a crucial role in both fibrogenesis and fibrosis resolution. Mice exposed to CCl4 demonstrated increased numbers of hepatic macrophages compared to normal mice; the number of macrophages decreased significantly in CCl4 treated mice given hAEC. These mice had significantly lower hepatic protein levels of the chemokine monocyte chemoattractant protein-1 than mice given CCl4 alone. Alternatively activated M2 macrophages are associated with fibrosis resolution. CCl4 treated mice given hAEC showed increased expression of genes associated with M2 macrophages including YM-1, IL-10 and CD206. We provide novel data showing that hAEC transplantation induces a wound healing M2 macrophage phenotype associated with reduction of established hepatic fibrosis that justifies further investigation of this potential cell-based therapy for advanced hepatic fibrosis
Immunosuppressive potential of human amnion epithelial cells in the treatment of experimental autoimmune encephalomyelitis
BACKGROUND: Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system (CNS). In recent years, it has been found that cells such as human amnion epithelial cells (hAECs) have the ability to modulate immune responses in vitro and in vivo and can differentiate into multiple cell lineages. Accordingly, we investigated the immunoregulatory effects of hAECs as a potential therapy in an MS-like disease, EAE (experimental autoimmune encephalomyelitis), in mice. METHODS: Using flow cytometry, the phenotypic profile of hAECs from different donors was assessed. The immunomodulatory properties of hAECs were examined in vitro using antigen-specific and one-way mixed lymphocyte proliferation assays. The therapeutic efficacy of hAECs was examined using a relapsing-remitting model of EAE in NOD/Lt mice. T cell responsiveness, cytokine secretion, T regulatory, and T helper cell phenotype were determined in the peripheral lymphoid organs and CNS of these animals. RESULTS: In vitro, hAECs suppressed both specific and non-specific T cell proliferation, decreased pro-inflammatory cytokine production, and inhibited the activation of stimulated T cells. Furthermore, T cells retained their naïve phenotype when co-cultured with hAECs. In vivo studies revealed that hAECs not only suppressed the development of EAE but also prevented disease relapse in these mice. T cell responses and production of the pro-inflammatory cytokine interleukin (IL)-17A were reduced in hAEC-treated mice, and this was coupled with a significant increase in the number of peripheral T regulatory cells and naïve CD4+ T cells. Furthermore, increased proportions of Th2 cells in the peripheral lymphoid organs and within the CNS were observed. CONCLUSION: The therapeutic effect of hAECs is in part mediated by inducing an anti-inflammatory response within the CNS, demonstrating that hAECs hold promise for the treatment of autoimmune diseases like MS
Stable Adaptive Controller Based on Generalized Regression Neural Networks and Sliding Mode Control for a Class of Nonlinear Time-Varying Systems
Finding synergy between a variety of control and estimation approaches can lead to effective solutions for controlling nonlinear dynamic systems in an efficient and systematic manner. In this paper, a novel controller design consisting of generalized regression neural networks (GRNNs) and sliding mode control (SMC) is proposed to control nonlinear multi-input and multi-output (MIMO) dynamic systems. The proposed design transforms GRNN from an offline regression model to an online adaptive controller. The suggested controller does not require any pretraining and it learns quickly from scratch. It uses a low computational complexity algorithm to provide accurate and stable performance. The proposed controller (GRNNSMC) performance is verified with a generic MIMO nonlinear dynamic system and a hexacopter model with a variable center of gravity. The results are compared with the standard PID controller. In addition, the stability of the GRNNSMC controller is verified using the Lyapunov stability method