16 research outputs found

    Newly Diagnosed IDH-Wildtype Glioblastoma and Temporal Muscle Thickness: A Multicenter Analysis

    Get PDF
    Background: Reduced temporal muscle thickness (TMT) has been discussed as a prognostic marker in IDH-wildtype glioblastoma. This retrospective multicenter study was designed to investigate whether TMT is an independent prognostic marker in newly diagnosed glioblastoma. Methods: TMT was retrospectively measured in 335 patients with newly diagnosed glioblastoma between 1 January 2014 and 31 December 2019 at the University Hospitals of Leipzig and Rostock. The cohort was dichotomized by TMT and tested for association with overall survival (OS) after 12 months by multivariate proportional hazard calculation. Results: TMT of 7.0 mm or more was associated with increased OS (46.3 ± 3.9% versus 36.6 ± 3.9%, p > 0.001). However, the sub-groups showed significant epidemiological differences. In multivariate proportional hazard calculation, patient age (HR 1.01; p = 0.004), MGMT promoter status (HR 0.76; p = 0.002), EOR (HR 0.61), adjuvant irradiation (HR 0.24) and adjuvant chemotherapy (HR 0.40; all p < 0.001) were independent prognostic markers for OS. However, KPS (HR 1.00, p = 0.31), BMI (HR 0.98, p = 0.11) and TMT (HR 1.06; p = 0.07) were not significantly associated with OS. Conclusion: TMT has not appeared as a statistically independent prognostic marker in this cohort of patients with newly diagnosed IDH-wildtype glioblastoma

    Usefulness and Limits of Tractography for Surgery in the Precentral Gyrus: A Case Report

    Get PDF
    The resection of tumors within the primary motor cortex is a constant challenge. Although tractography may help in preoperative planning, it has limited application. While it can give valuable information on subcortical fibers, it is less accurate in the cortical layer of the brain. A 38-year-old patient presented with paresis of the right hand and focal epileptic seizures due to a tumor in the left precentral gyrus. Transcranial magnetic stimulation was not applicable due to seizures, so microsurgical resection was performed with preoperative tractography and intraoperative direct electrical stimulation. A histopathological assessment revealed a diagnosis of glioblastoma. Postoperative magnetic resonance imaging (MRI) showed complete resection. The paresis dissolved completely during follow-up. Surgery within the precentral gyrus is of high risk and requires multimodal functional planning. If interpreted with vigilance and consciousness of the underlying physical premises, tractography can provide helpful information within its limitations, which is especially subcortically. However, it may also help in the identification of functional cortex columns of the brain in the presence of a tumor

    The Prognostic Value of NANO Scale Assessment in IDH-Wild-Type Glioblastoma Patients

    Get PDF
    Background: IDH-wild-type glioblastoma (GBM) is the most frequent brain-derived malignancy. Despite intense research efforts, it is still associated with a very poor prognosis. Several parameters were identified as prognostic, including general physical performance. In neuro-oncology (NO), special emphasis is put on focal deficits and cognitive (dys-)function. The Neurologic Assessment in Neuro-Oncology (NANO) scale was proposed in order to standardize the assessment of neurological performance in NO. This study evaluated whether NANO scale assessment provides prognostic information in a standardized collective of GBM patients. Methods: The records of all GBM patients treated between 2014 and 2019 at our facility were retrospectively screened. Inclusion criteria were age over 18 years, at least 3 months postoperative follow-up, and preoperative and postoperative cranial magnetic resonance imaging. The NANO scale was assessed pre- and postoperatively as well as at 3 months follow-up. Univariate and multivariate survival analyses were carried to investigate the prognostic value. Results: One hundred and thirty-one patients were included. In univariate analysis, poor postoperative neurological performance (HR 1.13, p = 0.004), poor neurological performance at 3 months postsurgery (HR 1.37, p < 0.001), and neurological deterioration during follow-up (HR 1.38, p < 0.001), all assessed via the NANO scale, were associated with shorter survival. In multivariate analysis including other prognostic factors such as the extent of resection, adjuvant treatment regimen, or age, NANO scale assessment at 3 months postoperative follow-up was independently associated with survival prediction (HR 1.36, p < 0.001). The optimal NANO scale cutoff for patient stratification was 3.5 points. Conclusion: Neurological performance assessment employing the NANO scale might provide prognostic information in patients suffering from GBM

    Newly Diagnosed IDH-Wildtype Glioblastoma and Temporal Muscle Thickness: A Multicenter Analysis

    Full text link
    Background: Reduced temporal muscle thickness (TMT) has been discussed as a prognostic marker in IDH-wildtype glioblastoma. This retrospective multicenter study was designed to investigate whether TMT is an independent prognostic marker in newly diagnosed glioblastoma. Methods: TMT was retrospectively measured in 335 patients with newly diagnosed glioblastoma between 1 January 2014 and 31 December 2019 at the University Hospitals of Leipzig and Rostock. The cohort was dichotomized by TMT and tested for association with overall survival (OS) after 12 months by multivariate proportional hazard calculation. Results: TMT of 7.0 mm or more was associated with increased OS (46.3 ± 3.9% versus 36.6 ± 3.9%, p > 0.001). However, the sub-groups showed significant epidemiological differences. In multivariate proportional hazard calculation, patient age (HR 1.01; p = 0.004), MGMT promoter status (HR 0.76; p = 0.002), EOR (HR 0.61), adjuvant irradiation (HR 0.24) and adjuvant chemotherapy (HR 0.40; all p < 0.001) were independent prognostic markers for OS. However, KPS (HR 1.00, p = 0.31), BMI (HR 0.98, p = 0.11) and TMT (HR 1.06; p = 0.07) were not significantly associated with OS. Conclusion: TMT has not appeared as a statistically independent prognostic marker in this cohort of patients with newly diagnosed IDH-wildtype glioblastoma

    Newly Diagnosed IDH-Wildtype Glioblastoma and Temporal Muscle Thickness: A Multicenter Analysis

    Full text link
    Background: Reduced temporal muscle thickness (TMT) has been discussed as a prognostic marker in IDH-wildtype glioblastoma. This retrospective multicenter study was designed to investigate whether TMT is an independent prognostic marker in newly diagnosed glioblastoma. Methods: TMT was retrospectively measured in 335 patients with newly diagnosed glioblastoma between 1 January 2014 and 31 December 2019 at the University Hospitals of Leipzig and Rostock. The cohort was dichotomized by TMT and tested for association with overall survival (OS) after 12 months by multivariate proportional hazard calculation. Results: TMT of 7.0 mm or more was associated with increased OS (46.3 ± 3.9% versus 36.6 ± 3.9%, p > 0.001). However, the sub-groups showed significant epidemiological differences. In multivariate proportional hazard calculation, patient age (HR 1.01; p = 0.004), MGMT promoter status (HR 0.76; p = 0.002), EOR (HR 0.61), adjuvant irradiation (HR 0.24) and adjuvant chemotherapy (HR 0.40; all p < 0.001) were independent prognostic markers for OS. However, KPS (HR 1.00, p = 0.31), BMI (HR 0.98, p = 0.11) and TMT (HR 1.06; p = 0.07) were not significantly associated with OS. Conclusion: TMT has not appeared as a statistically independent prognostic marker in this cohort of patients with newly diagnosed IDH-wildtype glioblastoma

    A Radiomics-Based Machine Learning Perspective on the Parotid Gland as a Potential Surrogate Marker for HPV in Oropharyngeal Cancer

    Full text link
    Background: In treatment of oropharyngeal squamous cell carcinoma (OPSCC), human papillomavirus status (HPV) plays a crucial role. The HPV-positive subtype tends to affect younger patients and is associated with a more favorable prognosis. HPV-associated lesions have been described in the parotid gland, which is included in routine imaging for OPSCC. This work aims to explore the ability of an ML system to classify HPV status based on imaging of the parotid gland, which is routinely depicted on staging imaging. Methods: Using a radiomics approach, we investigate the ability of five contemporary machine learning (ML) models to distinguish between HPV-positive and HPV-negative OPSCC based on non-contrast computed tomography (CT) data of tumor volume (TM), locoregional lymph node metastasis (LNM), and the parotid gland (Parotid). After exclusion of cases affected by streak artefacts, 53 patients (training set: 39; evaluation set: 14) were retrospectively evaluated. Classification performances were tested for significance against random optimistic results. Results: The best results are AUC 0.71 by XGBoost (XGB) for TM, AUC 0.82 by multi-layer perceptron (MLP) for LNM, AUC 0.76 by random forest (RF) for Parotid, and AUC 0.86 by XGB for a combination of all three regions of interest (ROIs). Conclusions: The results suggest involvement of the parotid gland in HPV infections of the oropharyngeal region. While the role of HPV in parotid lesions is under active discussion, the migration of the virus from the oral cavity to the parotid gland seems plausible. The imaging of the parotid gland offers the benefit of fewer streak artifacts due to teeth and dental implants and the potential to screen for HPV in cases of an absent or unlocatable tumor. Future investigation can be directed to validation of the results in independent datasets and to the potential of improvement of current classification models by addition of information based on the parotid gland

    Newly Diagnosed IDH-Wildtype Glioblastoma and Temporal Muscle Thickness: A Multicenter Analysis

    Full text link
    Background: Reduced temporal muscle thickness (TMT) has been discussed as a prognostic marker in IDH-wildtype glioblastoma. This retrospective multicenter study was designed to investigate whether TMT is an independent prognostic marker in newly diagnosed glioblastoma. Methods: TMT was retrospectively measured in 335 patients with newly diagnosed glioblastoma between 1 January 2014 and 31 December 2019 at the University Hospitals of Leipzig and Rostock. The cohort was dichotomized by TMT and tested for association with overall survival (OS) after 12 months by multivariate proportional hazard calculation. Results: TMT of 7.0 mm or more was associated with increased OS (46.3 ± 3.9% versus 36.6 ± 3.9%, p &gt; 0.001). However, the sub-groups showed significant epidemiological differences. In multivariate proportional hazard calculation, patient age (HR 1.01; p = 0.004), MGMT promoter status (HR 0.76; p = 0.002), EOR (HR 0.61), adjuvant irradiation (HR 0.24) and adjuvant chemotherapy (HR 0.40; all p &lt; 0.001) were independent prognostic markers for OS. However, KPS (HR 1.00, p = 0.31), BMI (HR 0.98, p = 0.11) and TMT (HR 1.06; p = 0.07) were not significantly associated with OS. Conclusion: TMT has not appeared as a statistically independent prognostic marker in this cohort of patients with newly diagnosed IDH-wildtype glioblastoma

    Usefulness and Limits of Tractography for Surgery in the Precentral Gyrus—A Case Report

    Full text link
    The resection of tumors within the primary motor cortex is a constant challenge. Although tractography may help in preoperative planning, it has limited application. While it can give valuable information on subcortical fibers, it is less accurate in the cortical layer of the brain. A 38-year-old patient presented with paresis of the right hand and focal epileptic seizures due to a tumor in the left precentral gyrus. Transcranial magnetic stimulation was not applicable due to seizures, so microsurgical resection was performed with preoperative tractography and intraoperative direct electrical stimulation. A histopathological assessment revealed a diagnosis of glioblastoma. Postoperative magnetic resonance imaging (MRI) showed complete resection. The paresis dissolved completely during follow-up. Surgery within the precentral gyrus is of high risk and requires multimodal functional planning. If interpreted with vigilance and consciousness of the underlying physical premises, tractography can provide helpful information within its limitations, which is especially subcortically. However, it may also help in the identification of functional cortex columns of the brain in the presence of a tumor

    Usefulness and Limits of Tractography for Surgery in the Precentral Gyrus: A Case Report

    Full text link
    The resection of tumors within the primary motor cortex is a constant challenge. Although tractography may help in preoperative planning, it has limited application. While it can give valuable information on subcortical fibers, it is less accurate in the cortical layer of the brain. A 38-year-old patient presented with paresis of the right hand and focal epileptic seizures due to a tumor in the left precentral gyrus. Transcranial magnetic stimulation was not applicable due to seizures, so microsurgical resection was performed with preoperative tractography and intraoperative direct electrical stimulation. A histopathological assessment revealed a diagnosis of glioblastoma. Postoperative magnetic resonance imaging (MRI) showed complete resection. The paresis dissolved completely during follow-up. Surgery within the precentral gyrus is of high risk and requires multimodal functional planning. If interpreted with vigilance and consciousness of the underlying physical premises, tractography can provide helpful information within its limitations, which is especially subcortically. However, it may also help in the identification of functional cortex columns of the brain in the presence of a tumor
    corecore