20 research outputs found
A Novel Data Generation Approach for Digital Forensic Application in Data Mining
With the rapid advancements in information and communication technology in the world, crimes committed are also becoming technically intensive. When crimes committed use digital devices, forensic examiners have to adopt practical frameworks and methods for recovering data for analysis as evidence. Data Generation, Data Warehousing and Data Mining, are the three essential features involved in this process. This paper proposes a unique way of generating, storing and analyzing data, retrieved from digital devices which pose as evidence in forensic analysis. A statistical approach is used in validating the reliability of the pre-processed data. This work proposes a practical framework for digital forensics on flash drives
Helium identification with LHCb
The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pp collision data at √(s) = 13 TeV recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5 fb-1. A total of around 105 helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50% with a corresponding background rejection rate of up to O(10^12). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei
Measurement of forward charged hadron flow harmonics in peripheral PbPb collisions at √sNN = 5.02 TeV with the LHCb detector
Flow harmonic coefficients,
v
n
, which are the key to studying the hydrodynamics of the quark-gluon plasma (QGP) created in heavy-ion collisions, have been measured in various collision systems and kinematic regions and using various particle species. The study of flow harmonics in a wide pseudorapidity range is particularly valuable to understand the temperature dependence of the shear viscosity to entropy density ratio of the QGP. This paper presents the first LHCb results of the second- and the third-order flow harmonic coefficients of charged hadrons as a function of transverse momentum in the forward region, corresponding to pseudorapidities between 2.0 and 4.9, using the data collected from PbPb collisions in 2018 at a center-of-mass energy of 5.02
TeV
. The coefficients measured using the two-particle angular correlation analysis method are smaller than the central-pseudorapidity measurements at ALICE and ATLAS from the same collision system but share similar features
Curvature-bias corrections using a pseudomass method
Momentum measurements for very high momentum charged particles, such as muons from electroweak vector boson decays, are particularly susceptible to charge-dependent curvature biases that arise from misalignments of tracking detectors. Low momentum charged particles used in alignment procedures have limited sensitivity to coherent displacements of such detectors, and therefore are unable to fully constrain these misalignments to the precision necessary for studies of electroweak physics. Additional approaches are therefore required to understand and correct for these effects. In this paper the curvature biases present at the LHCb detector are studied using the pseudomass method in proton-proton collision data recorded at centre of mass energy √(s)=13 TeV during 2016, 2017 and 2018. The biases are determined using Z→μ + μ - decays in intervals defined by the data-taking period, magnet polarity and muon direction. Correcting for these biases, which are typically at the 10-4 GeV-1 level, improves the Z→μ + μ - mass resolution by roughly 18% and eliminates several pathological trends in the kinematic-dependence of the mean dimuon invariant mass
Study of CP violation in B0 → DK⋆(892)0 decays with D → Kπ(ππ), ππ(ππ), and KK final states
A measurement of CP-violating observables associated with the interference
of B0 → D0K⋆
(892)0 and B0 → D¯ 0K⋆
(892)0 decay amplitudes is performed in the
D0 → K∓π
±(π
+π
−), D0 → π
+π
−(π
+π
−), and D0 → K+K− fnal states using data collected
by the LHCb experiment corresponding to an integrated luminosity of 9 fb−1
. CP-violating
observables related to the interference of B0
s → D0K¯ ⋆
(892)0 and B0
s → D¯ 0K¯ ⋆
(892)0 are also
measured, but no evidence for interference is found. The B0 observables are used to constrain
the parameter space of the CKM angle γ and the hadronic parameters r
DK⋆
B0 and δ
DK⋆
B0 with
inputs from other measurements. In a combined analysis, these measurements allow for four
solutions in the parameter space, only one of which is consistent with the world average
Future of Electric Vehicle Charging
Charging infrastructure for electric vehicles (EV) will be the key factor for ensuring a smooth transition to e-mobility. This paper focuses on five technologies that will play a fundamental role in this regard: smart charging, vehicle-to-grid (V2G), charging of EVs from photovoltaic panels (PV), contactless charging and on-road charging of EVs. Smart charging of EVs is expected to enable larger penetration of EVs and renewable energy, lower the charging cost and offer better utilization of the grid infrastructure. Bidirectional EV chargers will pave the way for V2G technology where the EV can be used for energy arbitrage and demand-side management. Solar charging of EV will result in sustainable transportation and use of the EV battery as PV storage. On the other hand, stationary contactless charging and on-road inductive charging of EV will remove the necessity for any cables, eliminate range anxiety issues and pave the way for automated driving. The electromagnetic and power converter design for contactless power transfer systems for future highways is reviewed in this paper.Accepted Author ManuscriptDC systems, Energy conversion & Storag
Comparative analysis of on-load tap changing (OLTC) transformer topologies
Old - EWI-ESE-DC&S DC systems & StorageElectrical Power Processin
Roadway to self-healing highways with integrated wireless electric vehicle charging and sustainable energy harvesting technologies
Development of electric mobility and sustainable energy result in new technologies such as contactless electric vehicle charging and roadway energy harvesting methods, but also self-healing asphalt roads. By combining these technologies a new concept of Future Sustainable Roads for Electric Mobility is created and presented in the paper. This paper bridges the gap created by these unilateral technology developments using a multi-disciplinary approach including placing cautions when necessary and suggesting viable alternatives for optimal utilization of these energy transfer and conversion techniques. Through theoretical analysis, simulations, and tests on lab-scale experimental prototypes, the impact of our proposal is showcased. Thermal and loss models are developed for self-healing asphalt. Also, integration study of solar roads and contactless charging is performed. Applying the insight gained from the results, it is discussed how some challenges also pave a way towards interesting opportunities, for instance, infrastructure sharing for material use optimization and efficient mosaic integration. Finally, an economic viability case study is presented for a future Dutch highway with such newly emerging components.DC systems, Energy conversion & StorageApplied Ergonomics and Desig
Green energy based inductive Self-Healing highways of the future
This paper deals with a green energy highway in the Netherlands. Here, the development of electric mobility and self-driving cars is introduced. The ideas of wireless power integration with green energy technologies - solar and wind is considered. In case of wind energy, conventional turbines and bladeless vortex are considered as options. Solaroads along the emergency lanes are also investigated. A Dutch highway A12 is considered as a case study and sizing of these energy sources for electric mobility is considered. A grid power demand profile is considered and number of EVs that can be charged hourly is calculated. A preliminary investigation of the combination of IPT and Self-Healing roads is considered in this study.Accepted Author ManuscriptDC systems, Energy conversion & StorageApplied Ergonomics and Desig