20,911 research outputs found

    Sparse Recovery Analysis of Preconditioned Frames via Convex Optimization

    Get PDF
    Orthogonal Matching Pursuit and Basis Pursuit are popular reconstruction algorithms for recovery of sparse signals. The exact recovery property of both the methods has a relation with the coherence of the underlying redundant dictionary, i.e. a frame. A frame with low coherence provides better guarantees for exact recovery. An equivalent formulation of the associated linear system is obtained via premultiplication by a non-singular matrix. In view of bounds that guarantee sparse recovery, it is very useful to generate the preconditioner in such way that the preconditioned frame has low coherence as compared to the original. In this paper, we discuss the impact of preconditioning on sparse recovery. Further, we formulate a convex optimization problem for designing the preconditioner that yields a frame with improved coherence. In addition to reducing coherence, we focus on designing well conditioned frames and numerically study the relationship between the condition number of the preconditioner and the coherence of the new frame. Alongside theoretical justifications, we demonstrate through simulations the efficacy of the preconditioner in reducing coherence as well as recovering sparse signals.Comment: 9 pages, 5 Figure

    Magnetotransport in the low carrier density ferromagnet EuB_6

    Full text link
    We present a magnetotransport study of the low--carrier density ferromagnet EuB_6. This semimetallic compound, which undergoes two ferromagnetic transitions at T_l = 15.3 K and T_c = 12.5 K, exhibits close to T_l a colossal magnetoresistivity (CMR). We quantitatively compare our data to recent theoretical work, which however fails to explain our observations. We attribute this disagreement with theory to the unique type of magnetic polaron formation in EuB_6.Comment: Conference contribution MMM'99, San Jos

    Visualisation of an entangled channel spin-1 system

    Get PDF
    Co-variance matrix formalism gives powerful entanglement criteria for continuous as well as finite dimensional systems. We use this formalism to study a mixed channel spin-1 system which is well known in nuclear reactions. A spin-j state can be visualized as being made up of 2j spinors which are represented by a constellation of 2j points on a Bloch sphere using Majorana construction. We extend this formalism to visualize an entangled mixed spin-1 system.Comment: 4 pages,4 figure

    Environmental effects of SPS: The middle atmosphere

    Get PDF
    The heavy lift launch vehicle associated with the solar power satellite (SPS) would deposit in the upper atmosphere exhaust and reentry products which could modify the composition of the stratosphere, mesosphere, and lower ionosphere. In order to assess such effects, atmospheric model simulations were performed, especially considering a geographic zone centered at the launch and reentry latitudes

    Instability of Rotationally Tuned Dipolar Bose-Einstein Condensates

    Get PDF
    The possibility of effectively inverting the sign of the dipole-dipole interaction, by fast rotation of the dipole polarization, is examined within a harmonically trapped dipolar Bose-Einstein condensate. Our analysis is based on the stationary states in the Thomas-Fermi limit, in the corotating frame, as well as direct numerical simulations in the Thomas-Fermi regime, explicitly accounting for the rotating polarization. The condensate is found to be inherently unstable due to the dynamical instability of collective modes. This ultimately prevents the realization of robust and long-lived rotationally tuned states. Our findings have major implications for experimentally accessing this regime.Comment: 9 pages with 5 figure
    corecore