115,532 research outputs found

    Many Sparse Cuts via Higher Eigenvalues

    Full text link
    Cheeger's fundamental inequality states that any edge-weighted graph has a vertex subset SS such that its expansion (a.k.a. conductance) is bounded as follows: \phi(S) \defeq \frac{w(S,\bar{S})}{\min \set{w(S), w(\bar{S})}} \leq 2\sqrt{\lambda_2} where ww is the total edge weight of a subset or a cut and λ2\lambda_2 is the second smallest eigenvalue of the normalized Laplacian of the graph. Here we prove the following natural generalization: for any integer k[n]k \in [n], there exist ckck disjoint subsets S1,...,SckS_1, ..., S_{ck}, such that maxiϕ(Si)Cλklogk \max_i \phi(S_i) \leq C \sqrt{\lambda_{k} \log k} where λi\lambda_i is the ithi^{th} smallest eigenvalue of the normalized Laplacian and c0c0 are suitable absolute constants. Our proof is via a polynomial-time algorithm to find such subsets, consisting of a spectral projection and a randomized rounding. As a consequence, we get the same upper bound for the small set expansion problem, namely for any kk, there is a subset SS whose weight is at most a \bigO(1/k) fraction of the total weight and ϕ(S)Cλklogk\phi(S) \le C \sqrt{\lambda_k \log k}. Both results are the best possible up to constant factors. The underlying algorithmic problem, namely finding kk subsets such that the maximum expansion is minimized, besides extending sparse cuts to more than one subset, appears to be a natural clustering problem in its own right

    W and Z Production in pp Collisions at 7TeV with ATLAS

    Full text link
    Measurements of W and Z cross-sections in pp collisions at ECM = 7 TeV at the Large Hadron Collider are reported from the ATLAS experiment. From an observation of 118 leptonic W candidates, the inclusive W cross-section times leptonic branching fraction is measured as [9.3 \pm 0.9(stat) \pm 0.6(syst) \pm 1.0(lumi)] nb. The result for the Z boson is [0.83 \pm 0.07(stat) \pm 0.06(syst) \pm 0.09(lumi)] nb. These results agree with theoretical expectations from NNLO QCD.Comment: 3 pages, 6 figure

    Infrared line parameters at low temperatures relevant to planetary atmospheres

    Get PDF
    Employing the techniques that were described in several publications for measuring infrared lineshifts, linewidths and line intensities with a tunable diode laser, these parameters were measures for lines in the important infrared bands of several molecules of interest to the planetary astronomer at low temperatures that are relevant to planetary atmospheres using He, Ne, Ar, H2, N2, O2, and air as the perturbers. In addition to obtaining the many original data on the temperature dependence of the intensities and linewidths, it was also the first measurement of the same for the collision-induced lineshift of an infrared line and it showed that it was markedly different from that of the corresponding collision-broadened linewidth
    corecore