46 research outputs found

    UX007 for the treatment of long chain-fatty acid oxidation disorders: Safety and efficacy in children and adults following 24weeks of treatment.

    Get PDF
    BACKGROUND: Long-chain fatty acid oxidation disorders (LC-FAOD) lead to accumulation of high concentrations of potentially toxic fatty acid intermediates. Newborn screening and early intervention have reduced mortality, but most patients continue to experience frequent hospitalizations and significant morbidity despite treatment. The deficient energy state can cause serious liver, muscle, and heart disease, and may be associated with an increased risk of sudden death. Triheptanoin is a medium odd-chain fatty acid. Anaplerotic metabolites of triheptanoin have the potential to replace deficient tricarboxylic acid (TCA) cycle intermediates, resulting in net glucose production as a novel energy source for the treatment of LC-FAOD. STUDY DESIGN: A single-arm, open-label, multicenter Phase 2 safety and efficacy study evaluated patients with severe LC-FAOD evidenced by ongoing related musculoskeletal, cardiac, and/or hepatic events despite treatment. After a four-week run-in on current regimen, investigational triheptanoin (UX007) was titrated to a target dose of 25-35% of total daily caloric intake. Patients were evaluated on several age/condition-eligible endpoints, including submaximal exercise tests to assess muscle function/endurance (12-minute walk test; 12MWT) and exercise tolerance (cycle ergometry), and health related quality of life (HR-QoL). Results through 24weeks of treatment are presented; total study duration is 78weeks. RESULTS: Twenty-nine patients (0.8 to 58years) were enrolled; most qualified based on severe musculoskeletal disease. Twenty-five patients (86%) completed the 24-week treatment period. At Week 18, eligible patients (n=8) demonstrated a 28% increase (LS mean=+181.9 meters; p=0.087) from baseline (673.4meters) in 12MWT distance. At Week 24, eligible patients (n=7) showed a 60% increase in watts generated (LS mean=+409.3W; p=0.149) over baseline (744.6W) for the exercise tolerance test. Improvements in exercise tests were supported by significant improvements from baseline in the adult (n=5) self-reported SF-12v2 physical component summary score (LS mean=+8.9; p CONCLUSIONS: In patients with severe LC-FAOD, UX007 interim study results demonstrated improved exercise endurance and tolerance, and were associated with positive changes in self-reported HR-QoL

    Mucopolysaccharidosis IVA (Morquio A syndrome) and VI (Maroteaux-Lamy syndrome): under-recognized and challenging to diagnose

    Get PDF
    OBJECTIVE: Mucopolysaccharidosis IVA (MPS IVA, or Morquio A syndrome) and VI (MPS VI, or Maroteaux-Lamy syndrome) are autosomal recessive lysosomal storage disorders. Skeletal abnormalities are common initial presenting symptoms and, when recognized early, may facilitate timely diagnosis and intervention, leading to improved patient outcomes. Patients with slowly progressing disease and nonclassic phenotypes can be particularly challenging to diagnose. The objective was to describe the radiographic features of patients with a delayed diagnosis of MPS IVA or VI. MATERIALS AND METHODS: This was a retrospective study. The records of 5 MPS IVA and 3 MPS VI patients with delayed diagnosis were reviewed. Radiographs were evaluated by a radiologist with special expertise in skeletal dysplasias. RESULTS: An important common theme in these cases was the appearance of multiple epiphyseal dysplasia (MED) with epiphyseal changes seemingly confined to the capital (proximal) femoral epiphyses. Very few patients had the skeletal features of classical dysostosis multiplex. CONCLUSIONS: Radiologists should appreciate the wide phenotypic variability of MPS IVA and VI. The cases presented here illustrate the importance of considering MPS in the differential diagnosis of certain skeletal dysplasias/disorders, including MED, some forms of spondylo-epiphyseal dysplasia (SED), and bilateral Perthes-like disease. It is important to combine radiographic findings with clinical information to facilitate early testing and accurate diagnosis

    GARS- related disease in infantile spinal muscular atrophy: Implications for diagnosis and treatment

    Full text link
    The majority of patients with spinal muscular atrophy (SMA) identified to date harbor a biallelic exonic deletion of SMN1. However, there have been reports of SMA- like disorders that are independent of SMN1, including those due to pathogenic variants in the glycyl- tRNA synthetase gene (GARS1). We report three unrelated patients with de novo variants in GARS1 that are associated with infantile- onset SMA (iSMA). Patients were ascertained during inpatient hospital evaluations for complications of neuropathy. Evaluations were completed as indicated for clinical care and management and informed consent for publication was obtained. One newly identified, disease- associated GARS1 variant, identified in two out of three patients, was analyzed by functional studies in yeast complementation assays. Genomic analyses by exome and/or gene panel and SMN1 copy number analysis of three patients identified two previously undescribed de novo missense variants in GARS1 and excluded SMN1 as the causative gene. Functional studies in yeast revealed that one of the de novo GARS1 variants results in a loss- of- function effect, consistent with other pathogenic GARS1 alleles. In sum, the patients’ clinical presentation, assessments of previously identified GARS1 variants and functional assays in yeast suggest that the GARS1 variants described here cause iSMA. GARS1 variants have been previously associated with Charcot- Marie- Tooth disease (CMT2D) and distal SMA type V (dSMAV). Our findings expand the allelic heterogeneity of GARS- associated disease and support that severe early- onset SMA can be caused by variants in this gene. Distinguishing the SMA phenotype caused by SMN1 variants from that due to pathogenic variants in other genes such as GARS1 significantly alters approaches to treatment.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154914/1/ajmga61544_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154914/2/ajmga61544.pd

    Plasma arginine levels in arginase deficiency in the “real world”

    No full text
    Background: Deficiency of arginase-1, the final enzyme in the urea cycle, causes a distinct clinical syndrome and is characterized biochemically by a high level of plasma arginine. While conventional therapy for urea cycle disorders can lower these levels to some extent, it does not normalize them. Until now, research on plasma arginine levels in this disorder has primarily relied on data from specialized tertiary centers, which limits the ability to assess the natural history and treatment efficacy of arginase-1 deficiency due to the small number of patients in each center and technical variations in plasma arginine measurements among different laboratories. Method: In this study, we reported plasma arginine levels from 51 patients with arginase-1 deficiency in the database of Quest Diagnostics. The samples were collected from different US regions. Results: The mean plasma arginine level in these treated patients was 373 μmol/L and the median level was 368.4 μmol/L. Our data set from 30 arginase deficiency patients with plasma amino acid data from five or more collections revealed significant correlations between the levels of arginine and five other amino acids (citrulline, alanine, ornithine, glutamine, and asparagine). Conclusion: Despite treatment, the arginine levels remained persistently elevated and did not change significantly with age, suggesting the current treatment regimen is inadequate to control arginine levels and underscoring the need to seek more effective treatments for this disorder

    Results from a 78-week, single-arm, open-label Phase 2 study to evaluate UX007 in pediatric and adult patients with severe long-chain fatty acid oxidation disorders (LC-FAOD).

    Get PDF
    Long-chain fatty acid oxidation disorders (LC-FAOD) are rare disorders characterized by acute crises of energy metabolism and severe energy deficiency that may present with cardiomyopathy, hypoglycemia, and/or rhabdomyolysis, which can lead to frequent hospitalizations and early death. An open-label Phase 2 study evaluated the efficacy of UX007, an investigational odd-carbon medium-chain triglyceride, in 29 subjects with severe LC-FAOD. UX007 was administered over 78 weeks at a target dose of 25-35% total daily caloric intake (mean 27.5%). The frequency and duration of major clinical events (hospitalizations, emergency room visits, and emergency home interventions due to rhabdomyolysis, hypoglycemia, and cardiomyopathy) occurring during 78 weeks of UX007 treatment was compared with the frequency and duration of events captured retrospectively from medical records for 78 weeks before UX007 initiation. The mean annualized event rates decreased from 1.69 to 0.88 events/year following UX007 initiation (p = 0.021; 48.1% reduction). The mean annualized duration rate decreased from 5.96 to 2.96 days/year (p = 0.028; 50.3% reduction). Hospitalizations due to rhabdomyolysis, the most common event, decreased from 1.03 to 0.63 events/year (p = 0.104; 38.7% reduction). Initiation of UX007 eliminated hypoglycemia events leading to hospitalization (from 11 pre-UX007 hospitalizations, 0.30 events/year vs. 0; p = 0.067) and intensive care unit (ICU) care (from 2 pre-UX007 ICU admissions, 0.05 events/year vs. 0; p = 0.161) and reduced cardiomyopathy events (3 events vs. 1 event; 0.07 to 0.02 events/year; 69.7% decrease). The majority of treatment-related adverse events (AEs) were mild to moderate gastrointestinal symptoms, including diarrhea, vomiting, and abdominal or gastrointestinal pain, which can be managed with smaller, frequent doses mixed with food
    corecore