1,709 research outputs found

    Quantum Spectra and Wave Functions in Terms of Periodic Orbits for Weakly Chaotic Systems

    Full text link
    Special quantum states exist which are quasiclassical quantizations of regions of phase space that are weakly chaotic. In a weakly chaotic region, the orbits are quite regular and remain in the region for some time before escaping and manifesting possible chaotic behavior. Such phase space regions are characterized as being close to periodic orbits of an integrable reference system. The states are often rather striking, and can be concentrated in spatial regions. This leads to possible phenomena. We review some methods we have introduced to characterize such regions and find analytic formulas for the special states and their energies.Comment: 9 pages, 8 eps figure

    Electron correlations and single-particle physics in the Integer Quantum Hall Effect

    Full text link
    The compressibility of a two-dimensional electron system with spin in a spatially correlated random potential and a quantizing magnetic field is investigated. Electron-electron interaction is treated with the Hartree-Fock method. Numerical results for the influences of interaction and disorder on the compressibility as a function of the particle density and the strength of the magnetic field are presented. Localization-delocalization transitions associated with highly compressible region in the energy spectrum are found at half-integer filling factors. Coulomb blockade effects are found near integer fillings in the regions of low compressibility. Results are compared with recent experiments.Comment: 4 pages, 2 figures, replaced with revised versio

    Experimental observation of the spin-Hall effect in a two dimensional spin-orbit coupled semiconductor system

    Get PDF
    We report the experimental observation of the spin-Hall effect in a two-dimensional (2D) hole system with Rashba spin-orbit coupling. The 2D hole layer is a part of a p-n junction light-emitting diode with a specially designed co-planar geometry which allows an angle-resolved polarization detection at opposite edges of the 2D hole system. In equilibrium the angular momenta of the Rashba split heavy hole states lie in the plane of the 2D layer. When an electric field is applied across the hole channel a non zero out-of-plane component of the angular momentum is detected whose sign depends on the sign of the electric field and is opposite for the two edges. Microscopic quantum transport calculations show only a weak effect of disorder suggesting that the clean limit spin-Hall conductance description (intrinsic spin-Hall effect) might apply to our system.Comment: 4 pages, 3 figures, paper based on work presented at the Gordon Research Conference on Magnetic Nano-structures (August 2004) and Oxford Kobe Seminar on Spintronics (September 2004); accepted for publication in Physical Review Letters December 200

    Imaging Transport Resonances in the Quantum Hall Effect

    Full text link
    We use a scanning capacitance probe to image transport in the quantum Hall system. Applying a DC bias voltage to the tip induces a ring-shaped incompressible strip (IS) in the 2D electron system (2DES) that moves with the tip. At certain tip positions, short-range disorder in the 2DES creates a quantum dot island in the IS. These islands enable resonant tunneling across the IS, enhancing its conductance by more than four orders of magnitude. The images provide a quantitative measure of disorder and suggest resonant tunneling as the primary mechanism for transport across ISs.Comment: 4 pages, 4 figures, submitted to PRL. For movies and additional infomation, see http://electron.mit.edu/scanning/; Added scale bars to images, revised discussion of figure 3, other minor change

    Anyon Condensation and Continuous Topological Phase Transitions in Non-Abelian Fractional Quantum Hall States

    Full text link
    We find a series of possible continuous quantum phase transitions between fractional quantum Hall (FQH) states at the same filling fraction in two-component quantum Hall systems. These can be driven by tuning the interlayer tunneling and/or interlayer repulsion. One side of the transition is the Halperin (p,p,p-3) Abelian two-component state while the other side is the non-Abelian Z4 parafermion (Read-Rezayi) state. We predict that the transition is a continuous transition in the 3D Ising class. The critical point is described by a Z2 gauged Ginzburg-Landau theory. These results have implications for experiments on two-component systems at \nu = 2/3 and single-component systems at \nu = 8/3.Comment: 4 pages + ref

    Synthetic magnetic fluxes on the honeycomb lattice

    Full text link
    We devise experimental schemes able to mimic uniform and staggered magnetic fluxes acting on ultracold two-electron atoms, such as ytterbium atoms, propagating in a honeycomb lattice. The atoms are first trapped into two independent state-selective triangular lattices and are further exposed to a suitable configuration of resonant Raman laser beams. These beams induce hops between the two triangular lattices and make atoms move in a honeycomb lattice. Atoms traveling around each unit cell of this honeycomb lattice pick up a nonzero phase. In the uniform case, the artificial magnetic flux sustained by each cell can reach about two flux quanta, thereby realizing a cold atom analogue of the Harper model with its notorious Hofstadter's butterfly structure. Different condensed-matter phenomena such as the relativistic integer and fractional quantum Hall effects, as observed in graphene samples, could be targeted with this scheme.Comment: 12 pages, 14 figure

    Non-Abelian Braiding of Lattice Bosons

    Full text link
    We report on a numerical experiment in which we use time-dependent potentials to braid non-abelian quasiparticles. We consider lattice bosons in a uniform magnetic field within the fractional quantum Hall regime, where ν\nu, the ratio of particles to flux quanta, is near 1/2, 1 or 3/2. We introduce time-dependent potentials which move quasiparticle excitations around one another, explicitly simulating a braiding operation which could implement part of a gate in a quantum computation. We find that different braids do not commute for ν\nu near 11 and 3/23/2, with Berry matrices respectively consistent with Ising and Fibonacci anyons. Near ν=1/2\nu=1/2, the braids commute.Comment: 5 pages, 1 figur
    corecore