1,898 research outputs found
Provable Dynamic Robust PCA or Robust Subspace Tracking
Dynamic robust PCA refers to the dynamic (time-varying) extension of robust
PCA (RPCA). It assumes that the true (uncorrupted) data lies in a
low-dimensional subspace that can change with time, albeit slowly. The goal is
to track this changing subspace over time in the presence of sparse outliers.
We develop and study a novel algorithm, that we call simple-ReProCS, based on
the recently introduced Recursive Projected Compressive Sensing (ReProCS)
framework. Our work provides the first guarantee for dynamic RPCA that holds
under weakened versions of standard RPCA assumptions, slow subspace change and
a lower bound assumption on most outlier magnitudes. Our result is significant
because (i) it removes the strong assumptions needed by the two previous
complete guarantees for ReProCS-based algorithms; (ii) it shows that it is
possible to achieve significantly improved outlier tolerance, compared with all
existing RPCA or dynamic RPCA solutions by exploiting the above two simple
extra assumptions; and (iii) it proves that simple-ReProCS is online (after
initialization), fast, and, has near-optimal memory complexity.Comment: Minor writing edits. The paper has been accepted to IEEE Transactions
on Information Theor
Universal Sampling Rate Distortion
We examine the coordinated and universal rate-efficient sampling of a subset
of correlated discrete memoryless sources followed by lossy compression of the
sampled sources. The goal is to reconstruct a predesignated subset of sources
within a specified level of distortion. The combined sampling mechanism and
rate distortion code are universal in that they are devised to perform robustly
without exact knowledge of the underlying joint probability distribution of the
sources. In Bayesian as well as nonBayesian settings, single-letter
characterizations are provided for the universal sampling rate distortion
function for fixed-set sampling, independent random sampling and memoryless
random sampling. It is illustrated how these sampling mechanisms are
successively better. Our achievability proofs bring forth new schemes for joint
source distribution-learning and lossy compression
Low-rank Matrix Completion using Alternating Minimization
Alternating minimization represents a widely applicable and empirically
successful approach for finding low-rank matrices that best fit the given data.
For example, for the problem of low-rank matrix completion, this method is
believed to be one of the most accurate and efficient, and formed a major
component of the winning entry in the Netflix Challenge.
In the alternating minimization approach, the low-rank target matrix is
written in a bi-linear form, i.e. ; the algorithm then alternates
between finding the best and the best . Typically, each alternating step
in isolation is convex and tractable. However the overall problem becomes
non-convex and there has been almost no theoretical understanding of when this
approach yields a good result.
In this paper we present first theoretical analysis of the performance of
alternating minimization for matrix completion, and the related problem of
matrix sensing. For both these problems, celebrated recent results have shown
that they become well-posed and tractable once certain (now standard)
conditions are imposed on the problem. We show that alternating minimization
also succeeds under similar conditions. Moreover, compared to existing results,
our paper shows that alternating minimization guarantees faster (in particular,
geometric) convergence to the true matrix, while allowing a simpler analysis
- …
