1,898 research outputs found

    Provable Dynamic Robust PCA or Robust Subspace Tracking

    Full text link
    Dynamic robust PCA refers to the dynamic (time-varying) extension of robust PCA (RPCA). It assumes that the true (uncorrupted) data lies in a low-dimensional subspace that can change with time, albeit slowly. The goal is to track this changing subspace over time in the presence of sparse outliers. We develop and study a novel algorithm, that we call simple-ReProCS, based on the recently introduced Recursive Projected Compressive Sensing (ReProCS) framework. Our work provides the first guarantee for dynamic RPCA that holds under weakened versions of standard RPCA assumptions, slow subspace change and a lower bound assumption on most outlier magnitudes. Our result is significant because (i) it removes the strong assumptions needed by the two previous complete guarantees for ReProCS-based algorithms; (ii) it shows that it is possible to achieve significantly improved outlier tolerance, compared with all existing RPCA or dynamic RPCA solutions by exploiting the above two simple extra assumptions; and (iii) it proves that simple-ReProCS is online (after initialization), fast, and, has near-optimal memory complexity.Comment: Minor writing edits. The paper has been accepted to IEEE Transactions on Information Theor

    Universal Sampling Rate Distortion

    Full text link
    We examine the coordinated and universal rate-efficient sampling of a subset of correlated discrete memoryless sources followed by lossy compression of the sampled sources. The goal is to reconstruct a predesignated subset of sources within a specified level of distortion. The combined sampling mechanism and rate distortion code are universal in that they are devised to perform robustly without exact knowledge of the underlying joint probability distribution of the sources. In Bayesian as well as nonBayesian settings, single-letter characterizations are provided for the universal sampling rate distortion function for fixed-set sampling, independent random sampling and memoryless random sampling. It is illustrated how these sampling mechanisms are successively better. Our achievability proofs bring forth new schemes for joint source distribution-learning and lossy compression

    Low-rank Matrix Completion using Alternating Minimization

    Full text link
    Alternating minimization represents a widely applicable and empirically successful approach for finding low-rank matrices that best fit the given data. For example, for the problem of low-rank matrix completion, this method is believed to be one of the most accurate and efficient, and formed a major component of the winning entry in the Netflix Challenge. In the alternating minimization approach, the low-rank target matrix is written in a bi-linear form, i.e. X=UVX = UV^\dag; the algorithm then alternates between finding the best UU and the best VV. Typically, each alternating step in isolation is convex and tractable. However the overall problem becomes non-convex and there has been almost no theoretical understanding of when this approach yields a good result. In this paper we present first theoretical analysis of the performance of alternating minimization for matrix completion, and the related problem of matrix sensing. For both these problems, celebrated recent results have shown that they become well-posed and tractable once certain (now standard) conditions are imposed on the problem. We show that alternating minimization also succeeds under similar conditions. Moreover, compared to existing results, our paper shows that alternating minimization guarantees faster (in particular, geometric) convergence to the true matrix, while allowing a simpler analysis
    corecore