930 research outputs found
Finding the Graph of Epidemic Cascades
We consider the problem of finding the graph on which an epidemic cascade
spreads, given only the times when each node gets infected. While this is a
problem of importance in several contexts -- offline and online social
networks, e-commerce, epidemiology, vulnerabilities in infrastructure networks
-- there has been very little work, analytical or empirical, on finding the
graph. Clearly, it is impossible to do so from just one cascade; our interest
is in learning the graph from a small number of cascades.
For the classic and popular "independent cascade" SIR epidemics, we
analytically establish the number of cascades required by both the global
maximum-likelihood (ML) estimator, and a natural greedy algorithm. Both results
are based on a key observation: the global graph learning problem decouples
into local problems -- one for each node. For a node of degree , we show
that its neighborhood can be reliably found once it has been infected times (for ML on general graphs) or times (for greedy on
trees). We also provide a corresponding information-theoretic lower bound of
; thus our bounds are essentially tight. Furthermore, if we
are given side-information in the form of a super-graph of the actual graph (as
is often the case), then the number of cascade samples required -- in all cases
-- becomes independent of the network size .
Finally, we show that for a very general SIR epidemic cascade model, the
Markov graph of infection times is obtained via the moralization of the network
graph.Comment: To appear in Proc. ACM SIGMETRICS/Performance 201
Provable Dynamic Robust PCA or Robust Subspace Tracking
Dynamic robust PCA refers to the dynamic (time-varying) extension of robust
PCA (RPCA). It assumes that the true (uncorrupted) data lies in a
low-dimensional subspace that can change with time, albeit slowly. The goal is
to track this changing subspace over time in the presence of sparse outliers.
We develop and study a novel algorithm, that we call simple-ReProCS, based on
the recently introduced Recursive Projected Compressive Sensing (ReProCS)
framework. Our work provides the first guarantee for dynamic RPCA that holds
under weakened versions of standard RPCA assumptions, slow subspace change and
a lower bound assumption on most outlier magnitudes. Our result is significant
because (i) it removes the strong assumptions needed by the two previous
complete guarantees for ReProCS-based algorithms; (ii) it shows that it is
possible to achieve significantly improved outlier tolerance, compared with all
existing RPCA or dynamic RPCA solutions by exploiting the above two simple
extra assumptions; and (iii) it proves that simple-ReProCS is online (after
initialization), fast, and, has near-optimal memory complexity.Comment: Minor writing edits. The paper has been accepted to IEEE Transactions
on Information Theor
Universal Sampling Rate Distortion
We examine the coordinated and universal rate-efficient sampling of a subset
of correlated discrete memoryless sources followed by lossy compression of the
sampled sources. The goal is to reconstruct a predesignated subset of sources
within a specified level of distortion. The combined sampling mechanism and
rate distortion code are universal in that they are devised to perform robustly
without exact knowledge of the underlying joint probability distribution of the
sources. In Bayesian as well as nonBayesian settings, single-letter
characterizations are provided for the universal sampling rate distortion
function for fixed-set sampling, independent random sampling and memoryless
random sampling. It is illustrated how these sampling mechanisms are
successively better. Our achievability proofs bring forth new schemes for joint
source distribution-learning and lossy compression
- …