5 research outputs found

    Autogenic entrenchment patterns and terraces due to coupling with lateral erosion in incising alluvial channels

    Get PDF
    The abandonment of terraces in incising alluvial rivers can be used to infer tectonic and climatic histories. A river incising into alluvium erodes both vertically and laterally as it abandons fill-cut terraces. We argue that the input of sediment from the valley walls during entrenchment can alter the incision dynamics of a stream by promoting vertical incision over lateral erosion. Using a numerical model, we investigate how valley wall feedbacks may affect incision rates and terrace abandonment as the channel becomes progressively more entrenched in its valley. We postulate that erosion of taller valley walls delivers large pulses of sediment to the incising channel, potentially overwhelming the local sediment transport capacity. Based on field observations, we propose that these pulses of sediment can form talus piles that shield the valley wall from subsequent erosion and potentially force progressive channel narrowing. Our model shows that this positive feedback mechanism can enhance vertical incision relative to 1-D predictions that ignore lateral erosion. We find that incision is most significantly enhanced when sediment transport rates are low relative to the typical volume of material collapsed from the valley walls. The model also shows a systematic erosion of the youngest terraces when river incision slows down. The autogenic entrenchment due to lateral feedbacks with valley walls should be taken into account in the interpretation of complex-response terraces

    The role of three-dimensional boundary stresses in limiting the occurrence and size of experimental landslides

    Get PDF
    The occurrence of seepage-induced shallow landslides on hillslopes and steep channel beds is important for landscape evolution and natural hazards. Infinite-slope stability models have been applied for seven decades, but sediment beds generally require higher water saturation levels than predicted for failure, and controlled experiments are needed to test models. We initiated 90 landslides in a 5 m long laboratory flume with a range in sediment sizes (D = 0.7, 2, 5, and 15 mm) and hillslope angles (θ = 20° to 43°), resulting in subsurface flow that spanned the Darcian and turbulent regimes, and failures that occurred with subsaturated and supersaturated sediment beds. Near complete saturation was required for failure in most experiments, with water levels far greater than predicted by infinite-slope stability models. Although 3-D force balance models predict that larger landslides are less stable, observed downslope landslide lengths were typically only several decimeters, not the entire flume length. Boundary stresses associated with short landslides can explain the increased water levels required for failure, and we suggest that short failures are tied to heterogeneities in granular properties. Boundary stresses also limited landslide thicknesses, and landslides progressively thinned on lower gradient hillslopes until they were one grain diameter thick, corresponding to a change from near-saturated to supersaturated sediment beds. Thus, landslides are expected to be thick on steep hillslopes with large frictional stresses acting on the boundaries, whereas landslides should be thin on low-gradient hillslopes or in channel beds with a critical saturation level that is determined by sediment size

    Autogenic entrenchment patterns and terraces due to coupling with lateral erosion in incising alluvial channels

    Get PDF
    The abandonment of terraces in incising alluvial rivers can be used to infer tectonic and climatic histories. A river incising into alluvium erodes both vertically and laterally as it abandons fill-cut terraces. We argue that the input of sediment from the valley walls during entrenchment can alter the incision dynamics of a stream by promoting vertical incision over lateral erosion. Using a numerical model, we investigate how valley wall feedbacks may affect incision rates and terrace abandonment as the channel becomes progressively more entrenched in its valley. We postulate that erosion of taller valley walls delivers large pulses of sediment to the incising channel, potentially overwhelming the local sediment transport capacity. Based on field observations, we propose that these pulses of sediment can form talus piles that shield the valley wall from subsequent erosion and potentially force progressive channel narrowing. Our model shows that this positive feedback mechanism can enhance vertical incision relative to 1-D predictions that ignore lateral erosion. We find that incision is most significantly enhanced when sediment transport rates are low relative to the typical volume of material collapsed from the valley walls. The model also shows a systematic erosion of the youngest terraces when river incision slows down. The autogenic entrenchment due to lateral feedbacks with valley walls should be taken into account in the interpretation of complex-response terraces

    The role of three-dimensional boundary stresses in limiting the occurrence and size of experimental landslides

    Get PDF
    The occurrence of seepage-induced shallow landslides on hillslopes and steep channel beds is important for landscape evolution and natural hazards. Infinite-slope stability models have been applied for seven decades, but sediment beds generally require higher water saturation levels than predicted for failure, and controlled experiments are needed to test models. We initiated 90 landslides in a 5 m long laboratory flume with a range in sediment sizes (D = 0.7, 2, 5, and 15 mm) and hillslope angles (θ = 20° to 43°), resulting in subsurface flow that spanned the Darcian and turbulent regimes, and failures that occurred with subsaturated and supersaturated sediment beds. Near complete saturation was required for failure in most experiments, with water levels far greater than predicted by infinite-slope stability models. Although 3-D force balance models predict that larger landslides are less stable, observed downslope landslide lengths were typically only several decimeters, not the entire flume length. Boundary stresses associated with short landslides can explain the increased water levels required for failure, and we suggest that short failures are tied to heterogeneities in granular properties. Boundary stresses also limited landslide thicknesses, and landslides progressively thinned on lower gradient hillslopes until they were one grain diameter thick, corresponding to a change from near-saturated to supersaturated sediment beds. Thus, landslides are expected to be thick on steep hillslopes with large frictional stresses acting on the boundaries, whereas landslides should be thin on low-gradient hillslopes or in channel beds with a critical saturation level that is determined by sediment size
    corecore