3 research outputs found

    Enhancing MPPT Performance in Partially Shaded PV Systems under Sensor Malfunctioning with Fuzzy Control

    No full text
    The shift towards sustainable energy sources is gaining momentum due to their environmental cleanliness, abundant availability, and eco-friendly characteristics. Solar energy, specifically harnessed through photovoltaic (PV) systems, emerges as a clean, abundant, and environmentally friendly alternative. However, the efficacy of PV systems is subjective depending on two critical factors: irradiance and temperature. To optimize power output, maximum power point tracking (MPPT) strategies are essential, allowing operation at the system’s optimal point. In the presence of partial shading, the power–voltage curve exhibits multiple peaks, yet only one global maximum power point (GMPP) can be identified. Existing algorithms for GMPP tracking often encounter challenges, including overshooting during transient periods and chattering during steady states. This study proposes the utilization of fuzzy sliding mode controllers (FSMC) and fuzzy proportional-integral (FPI) control to enhance global MPPT reference tracking under partial shading conditions. Additionally, the system’s performance is evaluated considering potential sensor malfunctions. The proposed techniques ensure precise tracking of the reference voltage and maximum power in partial shading scenarios, facilitating rapid convergence, improved system stability during transitions, and reduced chattering during steady states. The usefulness of the proposed scheme is confirmed through the use of performance indices. FSMC has the lowest integral absolute error (IAE) of 946.94, followed closely by FPI (947.21), in comparison to the sliding mode controller (SMC) (1241.6) and perturb and observe (P&O) (2433.1). Similarly, in integral time absolute error (ITAE), FSMC (56.84) and FPI (57.06) excel over SMC (91.03) and P&O (635.50)

    Hybrid FSK–FDM Scheme for Data Rate Enhancement in Dual-Function Radar and Communication

    No full text
    In this paper, we present a hybrid frequency shift keying and frequency division multiplexing (i.e., FSK–FDM) approach for information embedding in dual-function radar and communication (DFRC) design to achieve an improved communication data rate. Since most of the existing works focus on merely two-bit transmission in each pulse repetition interval (PRI) using different amplitude modulation (AM)- and phased modulation (PM)-based techniques, this paper proposes a new technique that doubles the data rate by using a hybrid FSK–FDM technique. Note that the AM-based techniques are used when the communication receiver resides in the side lobe region of the radar. In contrast, the PM-based techniques perform better if the communication receiver is in the main lobe region. However, the proposed design facilitates the delivery of information bits to the communication receivers with an improved bit rate (BR) and bit error rate (BER) regardless of their locations in the radar’s main lobe or side lobe regions. That is, the proposed scheme enables information encoding according to the transmitted waveforms and frequencies using FSK modulation. Next, the modulated symbols are added together to achieve a double data rate using the FDM technique. Finally, each transmitted composite symbol contains multiple FSK-modulated symbols, resulting in an increased data rate for the communication receiver. Numerous simulation results are presented to validate the effectiveness of the proposed technique

    A Refactoring Classification Framework for Efficient Software Maintenance

    No full text
    The expenses associated with software maintenance and evolution constitute a significant portion, surpassing more than 80% of the overall costs involved in software development. Refactoring, a widely embraced technique, plays a crucial role in streamlining and minimizing maintenance activities and expenses. However, the effect of refactoring techniques on quality attributes presents inconsistent and conflicting findings, making it challenging for software developers to enhance software quality effectively. Additionally, the absence of a comprehensive framework further complicates the decision-making process for developers when selecting appropriate refactoring techniques aligned with specific design objectives. In light of these considerations, this research aims to introduce a novel framework for classifying refactoring techniques based on their measurable influence on internal quality attributes. Initially, an exploratory study was conducted to identify commonly employed refactoring techniques, followed by an experimental analysis involving five case studies to evaluate the effects of these techniques on internal quality attributes. Subsequently, the framework was constructed based on the outcomes of the exploratory and experimental studies, further reinforced by a multi-case analysis. Comprising three key components, namely the methodology for applying refactoring techniques, the Quality Model for Object-Oriented Design (QMOOD), and the classification scheme for refactoring techniques, this proposed framework serves as a valuable guideline for developers. By comprehending the effect of each refactoring technique on internal quality attributes, developers can make informed decisions and select suitable techniques to enhance specific aspects of their software. Consequently, this framework optimizes developers’ time and effort by minimizing the need to weigh the pros and cons of different refactoring techniques, potentially leading to a reduction in maintenance activities and associated costs
    corecore