5 research outputs found

    Single-dose Pharmacokinetics of Nestorone\u3csup\u3e®\u3c/sup\u3e, a potential female-contraceptive

    No full text
    A synthetic progestin Nestorone® is being developed for female-contraception. This study was conducted to determine the distribution, metabolism, and excretion of tritium-labeled Nestorone (3H Nestorone) in adult female rats. Rats were injected subcutaneously (S.C.) with a single dose of 400 μCi 3H Nestorone/kg BW. Its distribution and concentrations in blood, plasma and other tissues were determined at defined times. The excreta were examined for elimination of 3H Nestorone. Radioactivity in all samples was analyzed by liquid scintillation counter. Metabolite profiling was performed by HPLC and LC/MS analysis of the plasma, urine, and feces samples. Following subcutaneous injection of 3H Nestorone, the mean peak concentrations of radioactivity (Cmax) in the blood and plasma were 58.1 and 95.5 ng equiv. 3H Nestorone/g, respectively, at 2-h postdose (Tmax). Thereafter, the concentration of drug steadily declined through 96-h postdose with a terminal elimination half-life (t1/2) of 15.6 h. 3H Nestorone-derived radioactivity was widely distributed in most tissues by 0.5 h and attained a mean maximal concentration by 2-h postdose. Approximately, 81.4% and 7.62% of the administered dose was excreted via feces and urine, respectively. In vivo metabolism of 3H Nestorone resulted into a total of 19 metabolites. Among them, two metabolites viz., 17α-deacetyl-Nestorone (M9) and 4,5-dihydro-17α-deacetyl-Nestorone (M19) were identified by HPLC and LC/MS analysis. Metabolite profiling of plasma samples showed that most of the circulating radioactivity was associated with unchanged parent drug, and M19. The M19 was a major metabolite in the profiled urine and feces samples. Presence of large proportion of drug/drug-related material in feces suggested that the biliary excretion is a main elimination route of 3H Nestorone. The distribution, metabolism, and excretion profiles of 3H Nestorone obtained in this study provide a fairly good insight about its fate in women

    Deciphering a Conformation-Specific Epitope of hCG-Through Immunokinetics

    No full text
    Proteins and peptides are comprised of both sequence-specific and conformation-specific epitopes. Sequence-specific epitopes are delineated by a peptide approach and other robust methods like competition assays, gene expression assays, synthetic peptide library based assays, etc. Available methods for deciphering conformation-specific epitopes are cumbersome (X-ray crystallography, etc.), time-consuming, and require expensive equipment. Therefore, it is indispensable to develop a simple method for identification and mapping of conformation-specific epitopes. In the present investigation, the radiolabeled human chorionic gonadotropin- (125IhCG) was employed as a probe and nitrocellulose (NC) as a solid support to immobilize monoclonal antibody (MAb) G1G10.1. The NC-G1G10.1-125IhCG complex (NCcom) was prepared and the dissociation of radiolabeled hCG was carried out in the presence of excess unlabeled ligate. From the experimental dissociation data under varying ionic strength, dissociation constants (k-1), association constants (k+1), and affinity constants (ka) were calculated. The values obtained were utilized in exploring the amino acid residues constituting an epitopic region of hCG involved in interaction with the complementary paratope on MAb G1G10.1. Kinetic data of the present study supported our recently published findings [using single step-solid phase radioimmunoassay (SS-SPRIA)] that the core region of a conformation-specific epitope of hCG consists of Arg (94, 95) and Asp (99) while a Lys (104) and a His (106) are in proximity to the core epitopic region. Therefore, the results of the present investigation suggested that the dissociation kinetics coupled with SS-SPRIA unequivocally assists in deciphering amino acid residues constituting a conformation-specific epitope of hC

    Distribution, metabolism and excretion of a synthetic androgen 7α-methyl-19-nortestosterone, a potential male-contraceptive

    No full text
    A synthetic androgen 7α-Methyl-19-nortestosterone (MENT) has a potential for therapeutic use in \u27androgen replacement therapy\u27 for hypogonadal men or as a hormonal male-contraceptive in normal men. Its tissue distribution, excretion and metabolic enzyme(s) have not been reported. Therefore, the present study tested the distribution and excretion of MENT in Sprague-Dawley rats castrated 24 h prior to the injection of tritium-labeled MENT (3H-MENT). Rats were euthanized at different time intervals after dosing, and the amount of radioactivity in various tissues/organs was measured following combustion in a Packard oxidizer. The radioactivity (% injected dose) was highest in the duodenal contents in the first 30 min of injection. Specific uptake of the steroid was observed in target tissues such as ventral prostate and seminal vesicles at 6 h, while in other tissues radioactivity equilibrated with blood. Liver and duodenum maintained high radioactivity throughout, as these organs were actively involved in the metabolism and excretion of most drugs. The excretion of 3H-MENT was investigated after subcutaneous injection of 3H-MENT into male rats housed in metabolic cages. Urine and feces were collected at different time intervals (up to 72 h) following injection. Results showed that the radioactivity was excreted via feces and urine in equal amounts by 30 h. Aiming to identify enzyme(s) involved in the MENT metabolism, we performed in vitro metabolism of 3H-MENT using rat and human liver microsomes, cytosol and recombinant cytochrome P450 (CYP) isozymes. The metabolites were separated by thin-layer chromatography (TLC). Three putative metabolites (in accordance with the report of Agarwal and Monder [Agarwal AK, Monder C. In vitro metabolism of 7α-methyl-19-nortestosterone by rat liver, prostate, and epididymis. Endocrinology 1988;123:2187-93]), [i] 3-hydroxylated MENT by both rat and human liver cytosol; [ii] 16α-hydroxylated MENT (a polar metabolite) by both rat and human hepatic microsomes; and [iii] 7α-methyl-19-norandrostenedione (a non-polar metabolite) by human hepatic microsomes, were obtained. By employing chemical inhibitors and specific anti-CYP antibodies, 3H-MENT was found to be metabolized specifically by rat CYP 2C11 and 3-hydroxysteroid dehydrogenase (3-HSD) enzymes whereas in humans it was accomplished by CYP 3A4, 17β-hydroxysteroid dehydrogenase (17β-HSD) and 3-HSD enzymes

    Kinetic analysis of a human chorionic gonadotropin- epitope-paratope interaction

    No full text
    Kinetics of protein-protein or ligand-ligate interaction has predominantly been studied by optical spectroscopy (particularly fluorescence) and surface plasmon resonance biosensors. Almost all such studies are based on association kinetics between ligand-ligate and suffer from certain methodological and interpretational limitations. Therefore, kinetic analyses of dissociation data of such interactions become indispensable. In the present investigation, the radiolabeled human chorionic gonadotropin- (125IhCG) was employed as a probe and nitrocellulose (NC) as a solid support to immobilize monoclonal antibody (MAb) G1G10.1. The NC-G1G10.1-125IhCG complex (NCcom) was prepared and the dissociation of radiolabeled hCG was carried out in the presence of excess unlabeled ligate. From the experimental dissociation data under varying ionic strength, dissociation constants (k-1), association constants (k+1) and affinity constants (ka) were calculated. The values obtained were utilized in exploring the amino acid residues constituting an epitopic region of hCG involved in interaction with the complementary paratope on MAb G1G10.1. Kinetic data of the present study supported our recently published findings [using single step-solid phase radioimmunoassay (SS-SPRIA)] that the core region of hCG epitope consists of Arg (94,95) and Asp (99) while a Lys (104) and a His (106) are in proximity to the core epitopic region. Based on the results of present investigation, we conclude that dissociation kinetics coupled with SS-SPRIA unequivocally provides considerable insight into the study of ligand-ligate interactions and epitope analysis
    corecore