17,493 research outputs found

    Probing Quark Matter In Neutron Stars

    Get PDF
    The presence of quark matter in neutron star interiors may have distinctive signatures in basic observables such as (i) masses and radii [1], (ii) surface temperatures versus age [2], (iii) spin-down rates of milli-second pulsars [3], and (iv) neutrino luminosities from future galactic core collapse supernovae [4]. I highlight recent developments in some of these areas with a view towards assessing how theory may be confirmed by ν−\nu-signals from future galactic supernovae in detectors like SuperK, SNO and others under consideration, including UNO [5], and by multi-wavelength photon observations with new generation satellites such as the HST, Chandra, and XMM.Comment: 4 pages, 2 figures. To appear in the proceedings of QM 2001. Uses fleqn.sty and espcrc1.st

    Mergers of binary stars: The ultimate heavy-ion experience

    Full text link
    The mergers of black hole-neutron star binaries are calcuated using a pseudo-general relativistic potential that incorporates O(v2/c2)3{\mathcal O}(v^2/c^2)^3 post-Newtonian corrections. Both normal matter neutron stars and self-bound strange quark matter stars are considered as black hole partners. As long as the neutron stars are not too massive relative to the black hole mass, orbital decay terminates in stable mass transfer rather than an actual merger. For a normal neutron star, mass transfer results in a widening of the orbit but the stable transfer ends before the minimum neutron star mass is reached. For a strange star, mass transfer does not result in an appreciable enlargement of the orbital separation, and the stable transfer continues until the strange star essentially disappears. These differences might be observable through their respective gravitational wave signatures.Comment: Contribution to QM04 proceedings. Submitted to Journal of Physics

    Bulk Viscosity of Interacting Hadrons

    Full text link
    We show that first approximations to the bulk viscosity ηv\eta_v are expressible in terms of factors that depend on the sound speed vsv_s, the enthalpy, and the interaction (elastic and inelastic) cross section. The explicit dependence of ηv\eta_v on the factor (13−vs2)(\frac 13 - v_s^2) is demonstrated in the Chapman-Enskog approximation as well as the variational and relaxation time approaches. The interesting feature of bulk viscosity is that the dominant contributions at a given temperature arise from particles which are neither extremely nonrelativistic nor extremely relativistic. Numerical results for a model binary mixture are reported.Comment: 4 pages, 1 figure, Contribution to Quark Matter 2009, Knoxville, Tennessee, US
    • …
    corecore