11,677 research outputs found

    Dense matter equation of state for neutron star mergers

    Full text link
    In simulations of binary neutron star mergers, the dense matter equation of state (EOS) is required over wide ranges of density and temperature as well as under conditions in which neutrinos are trapped, and the effects of magnetic fields and rotation prevail. Here we assess the status of dense matter theory and point out the successes and limitations of approaches currently in use. A comparative study of the excluded volume (EV) and virial approaches for the npαnp\alpha system using the equation of state of Akmal, Pandharipande and Ravenhall for interacting nucleons is presented in the sub-nuclear density regime. Owing to the excluded volume of the α\alpha-particles, their mass fraction vanishes in the EV approach below the baryon density 0.1 fm−3^{-3}, whereas it continues to rise due to the predominantly attractive interactions in the virial approach. The EV approach of Lattimer et al. is extended here to include clusters of light nuclei such as d, 3^3H and 3^3He in addition to α\alpha-particles. Results of the relevant state variables from this development are presented and enable comparisons with related but slightly different approaches in the literature. We also comment on some of the sweet and sour aspects of the supra-nuclear EOS. The extent to which the neutron star gravitational and baryon masses vary due to thermal effects, neutrino trapping, magnetic fields and rotation are summarized from earlier studies in which the effects from each of these sources were considered separately. Increases of about 20%(≳50%)20\% (\gtrsim 50\%) occur for rigid (differential) rotation with comparable increases occurring in the presence of magnetic fields only for fields in excess of 101810^{18} Gauss. Comparatively smaller changes occur due to thermal effects and neutrino trapping. Some future studies to gain further insight into the outcome of dynamical simulations are suggested.Comment: Revised manuscript with one additional figure and previous Fig. 4 replaced, 19 additional references and new tex

    Study of Ni and Zn doped CeOFeAs: Effect on the structural transition and specific heat capacity

    Full text link
    We have systematically studied the substitution of nonmagnetic Zn and magnetic Ni at iron sites in Ce based oxypnictide. The parent compound (CeOFeAs) shows an anomaly in resistivity around 150 K due to structural transition from tetragonal (space group: P4/nmm) to orthorhombic structure (space group: Cmma). Substitution of Zn suppresses this anomaly to lower temperature (~130 K) but Ni substitution does not show any anomaly around this temperature and the compound behaves like a metal. Further, we find that non magnetic (Zn) doping leads to higher impurity scattering as compared to magnetic Ni doping. Similar to the resistivity measurement, the specific heat shows another jump near 4 K for CeOFeAs. This is attributed to the ordering of Ce3+ moments. This peak shifts to 3.8 K for Zn substituted compound and there is no change in the ordering temperature in the Ni substituted CeOFeAs. These peaks are broadened in applied magnetic field (5 T) and the calculated magnetic entropy tends to saturate at the same value for 0 T and 5 T external magnetic field.Comment: 16 pages Text+Fig
    • …
    corecore