17 research outputs found

    Vegetation communities and edaphic relationships along a typical coastal saltmarsh to woodland gradient in eastern Tasmania

    Get PDF
    Saltmarsh soils impose harsh selection pressures on vegetation resulting in characteristic plant communities. For our study of the effect of edaphic factors on vegetation we chose Long Point in Moulting Lagoon, Tasmania’s largest saltmarsh, which is dominated by a diverse assemblage of halophytic succulents and graminoids. Three transects were established to sample variations in vegetation along the gradient from saltmarsh to woodland. Soil samples were analysed for summer and winter moisture, pH, and electrical conductivity (EC); a mixed summer and winter sample from each point was analysed for soil organic matter (SOM) and carbon. Additionally, a particle size analysis was carried out on all summer samples. Aspects of soil characteristics were aligned to classified vegetation groups and elevation. Moisture, pH, EC, SOM and carbon were all negatively correlated with elevation; the saltmarsh zone displaying higher levels of all variables than those in the adjacent woodland zone. Clay content decreased and sand content increased from the marine margin of the saltmarsh zone to the woodland zone. Within the saltmarsh zone, soil moisture, EC and carbon had highest values in the low marsh area, with values decreasing towards the upper marsh area. This study deepens our understanding of the roles various edaphic factors play in the floristic composition of coastal saltmarshes

    Prospects for seascape repair: Three case studies from eastern Australia

    Get PDF
    Three case studies spanning tropical, subtropical and temperate environments highlight the minimum potential benefits of investing in repair of coastal seascapes. Fisheries, a market benefit indicator readily understood by a range of stakeholders from policymakers to community advocates, were used as a surrogate for ecosystem services generated through seascape habitat restoration. For each case study, while recognising that biological information will always remain imperfect, the prospects for seascape repair are compelling

    Expanding fish productivity in Tasmanian saltmarsh wetlands through tidal re-connection and habitat repair

    Get PDF
    Fish use of coastal saltmarsh wetlands has been documented for many parts of Australia with the notable exception of Tasmania. An initial investigation to examine the diversity, density and patterns of fish use in the Circular Head coast saltmarshes of north-west Tasmania was undertaken. To aid decision making in repair strategies, the effect of saltmarsh condition on fish assemblages was studied using paired sites of predominantly unaltered and altered saltmarshes where levees were present. In all, 851 fish from 11 species were caught in 37 of the 48 pop nets. Three species, Aldrichetta forsteri, Arripis truttaceus and Rhombosolea tapirina, are important to commercial and recreational fisheries and contributed ,20% of the total catch numbers. The mean density of .72 fish per 100 m2 is the highest yet reported from Australian studies and indicates that Tasmanian saltmarshes provide higher value habitat for fish compared with elsewhere in Australia, likely due to more frequent and prolonged flooding, and the lack of adjacent mangroves. There was no significant difference in fish assemblages between unaltered and altered marshes. The results suggest that restoring basic saltmarsh structure through tidal reconnection will deliver substantial benefits for fish productivity through habitat expansion
    corecore