527 research outputs found
Electronic tuneability of a structurally rigid surface intermetallic and Kondo lattice: CePt / Pt(111)
We present an extensive study of structure, composition, electronic and
magnetic properties of Ce--Pt surface intermetallic phases on Pt(111) as a
function of their thickness. The sequence of structural phases appearing in low
energy electron diffraction (LEED) may invariably be attributed to a single
underlying intermetallic atomic lattice. Findings from both microscopic and
spectroscopic methods, respectively, prove compatible with CePt formation
when their characteristic probing depth is adequately taken into account. The
intermetallic film thickness serves as an effective tuning parameter which
brings about characteristic variations of the Cerium valence and related
properties. Soft x-ray absorption (XAS) and magnetic circular dichroism (XMCD)
prove well suited to trace the changing Ce valence and to assess relevant
aspects of Kondo physics in the CePt surface intermetallic. We find
characteristic Kondo scales of the order of 10 K and evidence for
considerable magnetic Kondo screening of the local Ce moments.
CePt/Pt(111) and related systems therefore appear to be promising
candidates for further studies of low-dimensional Kondo lattices at surfaces.Comment: 14 pages, 11 figure
Framing the FRAM: A literature review on the functional resonance analysis method
The development of the Functional Resonance Analysis Method (FRAM) has been motivated by the perceived limitations of fundamentally deterministic and probabilistic approaches to understand complex systemsβ behaviour. Congruent with the principles of Resilience Engineering, over recent years the FRAM has been progressively developed in scientific terms, and increasingly adopted in industrial environments with reportedly successful results. Nevertheless, a wide literature review focused on the method is currently lacking. On these premises, this paper aims to summarise all available published research in English about FRAM. More than 1700 documents from multiple scientific repositories were reviewed through a protocol based on the PRISMA review technique. The paper aims to uncover a number of characteristics of the FRAM research, both in terms of the method's application and of the authors contributing to its development. The systematic analysis explores the method in terms of its methodological aspects, application domains, and enhancements in qualitative and quantitative terms, as well as proposing potential future research directions
Occurrence, Fate, and Related Health Risks of PFAS in Raw and Produced Drinking Water
This study investigates
human exposure to per- and polyfluoroalkyl
substances (PFAS) via drinking water and evaluates human health risks.
An analytical method for 56 target PFAS, including ultrashort-chain
(C2βC3) and branched isomers, was developed. The limit of detection
(LOD) ranged from 0.009 to 0.1 ng/L, except for trifluoroacetic-acid
and perfluoropropanoic-acid with higher LODs of 35 and 0.24 ng/L,
respectively. The method was applied to raw and produced drinking
water from 18 Dutch locations, including groundwater or surface water
as source, and applied various treatment processes. Ultrashort-chain
(300 to 1100 ng/L) followed by the group of perfluoroalkyl-carboxylic-acids
(PFCA, β₯C4) (0.4 to 95.1 ng/L) were dominant. PFCA and perfluoroalkyl-sulfonic-acid
(β₯C4), including precursors, showed significantly higher levels
in drinking water produced from surface water. However, no significant
difference was found for ultrashort PFAS, indicating the need for
groundwater protection. Negative removal of PFAS occasionally observed
for advanced treatment indicates desorption and/or degradation of
precursors. The proportion of branched isomers was higher in raw and
produced drinking water as compared to industrial production. Drinking
water produced from surface water, except for a few locations, exceed
non-binding provisional guideline values proposed; however, all produced
drinking waters met the recent soon-to-be binding drinking-water-directive
requirements
Mechanical oscillations of magnetic strips under the influence of external field
This is the final version of the article. Available from EDP Sciences via the DOI in this record.JEMS 2012 β Joint European Magnetic SymposiaBy application of a magnetic field on an amorphous metallic strip, the orientation of magnetization of Weiss domains can be changed. When the strip changes its length, this effect is called magnetostriction. We simulate this effect using a finite element method. In particular we calculate the change of the mechanical resonance frequency of a magnetic platelet as a function of the applied field. This gives a quantitative model of the influence of the applied magnetic field on the effective Young's Modulus of the material. Β© 2013 Owned by the authors, published by EDP Sciences
Convergence of simple adaptive Galerkin schemes based on h β h/2 error estimators
We discuss several adaptive mesh-refinement strategies based on (h β h/2)-error estimation. This class of adaptivemethods is particularly popular in practise since it is problem independent and requires virtually no implementational overhead. We prove that, under the saturation assumption, these adaptive algorithms are convergent. Our framework applies not only to finite element methods, but also yields a first convergence proof for adaptive boundary element schemes. For a finite element model problem, we extend the proposed adaptive scheme and prove convergence even if the saturation assumption fails to hold in general
Multiscale modeling in micromagnetics : existence of solutions and numerical integration
Various applications ranging from spintronic devices, giant magnetoresistance sensors, and magnetic storage devices, include magnetic parts on very different length scales. Since the consideration of the Landau-Lifshitz-Gilbert equation (LLG) constrains the maximum element size to the exchange length within the media, it is numerically not attractive to simulate macroscopic parts with this approach. On the other hand, the magnetostatic Maxwell equations do not constrain the element size, but cannot describe the short-range exchange interaction accurately. A combination of both methods allows one to describe magnetic domains within the micromagnetic regime by use of LLG and also considers the macroscopic parts by a nonlinear material law using the Maxwell equations. In our work, we prove that under certain assumptions on the nonlinear material law, this multiscale version of LLG admits weak solutions. Our proof is constructive in the sense that we provide a linear-implicit numerical integrator for the multiscale model such that the numerically computable finite element solutions admit weak H1-convergence (at least for a subsequence) towards a weak solution
Chronic Fluid Flow Is an Environmental Modifier of Renal Epithelial Function
Although solitary or sensory cilia are present in most cells of the body and their existence has been known since the sixties, very little is been known about their functions. One suspected function is fluid flow sensing- physical bending of cilia produces an influx of Ca++, which can then result in a variety of activated signaling pathways. Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a progressive disease, typically appearing in the 5th decade of life and is one of the most common monogenetic inherited human diseases, affecting approximately 600,000 people in the United States. Because ADPKD is a slowly progressing disease, I asked how fluid flow may act, via the primary cilium, to alter epithelial physiology during the course of cell turnover. I performed an experiment to determine under what conditions fluid flow can result in a change of function of renal epithelial tissue. A wildtype epithelial cell line derived the cortical collecting duct of a heterozygous offspring of the Immortomouse (Charles River Laboratory) was selected as our model system. Gentle orbital shaking was used to induce physiologically relevant fluid flow, and periodic measurements of the transepithelial Sodium current were performed. At the conclusion of the experiment, mechanosensitive proteins of interest were visualized by immunostaining. I found that fluid flow, in itself, modifies the transepithelial sodium current, cell proliferation, and the actin cytoskeleton. These results significantly impact the understanding of both the mechanosensation function of primary cilia as well as the understanding of ADPKD disease progression
An Intact Kidney Slice Model to Investigate Vasa Recta Properties and Function in situ
Background: Medullary blood flow is via vasa recta capillaries, which possess contractile pericytes. In vitro studies using isolated descending vasa recta show that pericytes can constrict/dilate descending vasa recta when vasoactive substances are present. We describe a live kidney slice model in which pericyte-mediated vasa recta constriction/dilation can be visualized in situ. Methods: Confocal microscopy was used to image calcein, propidium iodide and Hoechst labelling in βliveβ kidney slices, to determine tubular and vascular cell viability and morphology. DIC video-imaging of live kidney slices was employed to investigate pericyte-mediated real-time changes in vasa recta diameter. Results: Pericytes were identified on vasa recta and their morphology and density were characterized in the medulla. Pericyte-mediated changes in vasa recta diameter (10β30%) were evoked in response to bath application of vasoactive agents (norepinephrine, endothelin-1, angiotensin-II and prostaglandin E2) or by manipulating endogenous vasoactive signalling pathways (using tyramine, L-NAME, a cyclo-oxygenase (COX-1) inhibitor indomethacin, and ATP release). Conclusions: The live kidney slice model is a valid complementary technique for investigating vasa recta function in situ and the role of pericytes as regulators of vasa recta diameter. This technique may also be useful in exploring the role of tubulovascular crosstalk in regulation of medullary blood flow
Interleukin-1Ξ² sequesters hypoxia inducible factor 2Ξ± to the primary cilium.
BACKGROUND: The primary cilium coordinates signalling in development, health and disease. Previously we have shown that the cilium is essential for the anabolic response to loading and the inflammatory response to interleukin-1Ξ² (IL-1Ξ²). We have also shown the primary cilium elongates in response to IL-1Ξ² exposure. Both anabolic phenotype and inflammatory pathology are proposed to be dependent on hypoxia-inducible factor 2 alpha (HIF-2Ξ±). The present study tests the hypothesis that an association exists between the primary cilium and HIFs in inflammatory signalling. RESULTS: Here we show, in articular chondrocytes, that IL-1Ξ²-induces primary cilia elongation with alterations to cilia trafficking of arl13b. This elongation is associated with a transient increase in HIF-2Ξ± expression and accumulation in the primary cilium. Prolyl hydroxylase inhibition results in primary cilia elongation also associated with accumulation of HIF-2Ξ± in the ciliary base and axoneme. This recruitment and the associated cilia elongation is not inhibited by blockade of HIFΞ± transcription activity or rescue of basal HIF-2Ξ± expression. Hypomorphic mutation to intraflagellar transport protein IFT88 results in limited ciliogenesis. This is associated with increased HIF-2Ξ± expression and inhibited response to prolyl hydroxylase inhibition. CONCLUSIONS: These findings suggest that ciliary sequestration of HIF-2Ξ± provides negative regulation of HIF-2Ξ± expression and potentially activity. This study indicates, for the first time, that the primary cilium regulates HIF signalling during inflammation
- β¦