16 research outputs found

    Exercise: the brittle cornerstone of type 2 diabetes treatment

    Get PDF
    Regular exercise has been recommended for diabetes patients for many years; however, it is not widely used clinically. This may be because of high costs, lack of reimbursement, low compliance and/or absence of proper infrastructure. Alternatively, structured exercise therapy may be underutilised because current guidelines do not include detailed information on the preferred type and intensity of exercise that should be applied to maximise the benefits of exercise for different subgroups of patients with type 2 diabetes. Based on available evidence and our own clinical research experience this article proposes that exercise therapy in type 2 diabetes might be more effective if (1) cardiac rehabilitation programmes served as a model for ‘pre-cardiac diabetes rehabilitation’; (2) resistance exercise were prescribed for sarcopenic or severely deconditioned type 2 diabetes patients; and (3) a multidisciplinary approach and continued exercise training under personal supervision became standard therapy. Nevertheless, more clinical research is warranted to establish the efficacy of an approach that takes into account type 2 diabetes subpopulations at different stages of the disease and with different levels of comorbidity

    Optimizing the therapeutic benefits of exercise in Type 2 diabetes.

    No full text
    AB - Background Besides diet and medication, exercise is considered one of the 3 cornerstones of good diabetes treatment. Nevertheless current clinical guidelines on type 2 diabetes provide no detailed information on the modalities of effective exercise intervention in the treatment of type 2 diabetes. Method Based on a review of currently available literature, exercise modalities are being identified to maximize the benefits of exercise intervention in the treatment of different type 2 diabetes subpopulations. Results Both endurance and resistance type of exercise have equal therapeutic strength to improve metabolic control in patients with type 2 diabetes. When applying endurance type exercise, energy expenditure should be equivalent to ~1.7-2.1 MJ per exercise bout on 3, but preferably 5 days per week. In sarcopenic or severely deconditioned patients with type 2 diabetes, focus should lie on the implementation of resistance type exercise to attenuate and/or reverse the decline in skeletal muscle mass and strength. Before choosing the most appropriate exercise modalities, the patient's disease stage should be well characterized and an ECG-stress test should be considered. Based on baseline aerobic fitness, level of co-morbidities, body composition and muscle strength, patients should be provided with an individually tailored exercise intervention program to optimize therapeutic value. Conclusion A multi-disciplinary individualized approach and continued exercise training under personal supervision is essential to enhance compliance and allow long-term health benefits of an exercise intervention program. Key words: type 2 diabetes, exercise, energy expenditure, sarcopenia, neuropathy

    Long-standing, insulin-treated type 2 diabetes patients with complications respond well to short-term resistance and interval exercise training

    No full text
    OBJECTIVE: To determine the feasibility and the benefits of combined resistance and interval exercise training on phenotype characteristics and skeletal muscle function in deconditioned, type 2 diabetes (T2D) patients with polyneuropathy. DESIGN: Short-term, single-arm intervention trial. METHODS: Eleven male T2D patients (age: 59.1+/-7.5 years; body mass index: 32.2+/-4.0 kg/m2) performed progressive resistance and interval exercise training thrice a week for 10 weeks. Besides primary diabetes outcome measures, muscle strength (MUST), maximal workload capacity (Wmax), whole-body peak oxygen uptake (VO2peak) and muscle oxidative capacity (MUOX), intramyocellular lipid (IMCL) and glycogen (IMCG) storage, and systemic inflammation markers were determined before and after training. Daily exogenous insulin requirements (EIR) and historic individualized EIR were gathered and analysed. RESULTS: MUST and Wmax increased with 17% (90% confidence intervals 9-24%) and 14% (6-21) respectively. Furthermore, mean arterial blood pressure declined with 5.5 mmHg (-9.7 to -1.4). EIR dropped with 5.0 IU/d (-11.5 to 1.5) compared with baseline. A decline of respectively -0.7 mmol/l (-2.9 to 1.5) and -147 micromol/l (-296 to 2) in fasting plasma glucose and non-esterified fatty acids concentrations were observed following the intervention, but these were not accompanied by changes in VO2peak, MUOX, IMCL or IMCG, and blood glycolysated haemoglobin, adiponectin, tumor necrosis factor-alpha and/or cholesterol concentrations. CONCLUSION: Short-term resistance and interval exercise training is feasible in deconditioned T2D patients with polyneuropathy and accompanied by moderate improvements in muscle function and blood pressure. Such a specific exercise regimen may provide a better framework for future exercise intervention programmes in the treatment of deconditioned T2D patients

    Influence of acute exercise on hyperglycemia in insulin-treated type 2 diabetes

    No full text
    INTRODUCTION: The impact of exercise on blood glucose homeostasis has not been assessed in long-standing type 2 diabetes patients receiving exogenous insulin treatment. PURPOSE: To study the effects of an acute bout of exercise on the subsequent 24-h blood glucose excursions under free-living conditions in insulin-treated type 2 diabetes patients. METHODS: Eleven male type 2 diabetes patients (59 +/- 2 yr) performed an acute bout of exercise. One day before the exercise bout, a continuous glucose monitoring system (GlucoDay, A. Menarini Diagnostics) was inserted subcutaneously in the periumbilical region. The glucose sensor continuously measured glucose concentrations in the dialysate during a 48-h period. RESULTS: The prevalence of hyperglycemic glucose excursions was reduced by 39% during a 24-h period (equivalent to 3 h) after an acute bout of exercise (P < 0.05). Average glucose concentrations 24 h before and after the exercise bout did not differ (NS). Mean dialysate glucose concentrations and the prevalence of hyperglycemic periods correlated strongly with baseline blood HbA1c concentrations (Pearson's R = 0.69, P < 0.05). CONCLUSION: An acute bout of exercise effectively reduces the prevalence of hyperglycemia during a 24-h period under free-living conditions in long-standing type 2 diabetes patients on exogenous insulin therapy

    Early or advanced stage type 2 diabetes is not accompanied by in vivo skeletal muscle mitochondrial dysfunction

    No full text
    Objective: Several lines of evidence support a potential role of skeletal muscle mitochondrial dysfunction in the pathogenesis of insulin resistance and/or type 2 diabetes. However, it remains to be established whether mitochondrial dysfunction represents either cause or consequence of the disease. We examined in vivo skeletal muscle mitochondrial function in early and advanced stages of type 2 diabetes, with the aim to gain insight in the proposed role of mitochondrial dysfunction in the aetiology of insulin resistance and/or type 2 diabetes. Methods: Ten long-standing, insulin-treated type 2 diabetes patients, 11 subjects with impaired fasting glucose, impaired glucose tolerance and/ or recently diagnosed type 2 diabetes, and 12 healthy, normoglycaemic controls, matched for age and body composition and with low habitual physical activity levels were studied. In vivo mitochondrial function of the vastus lateralis muscle was evaluated from post-exercise phosphocreatine (PCr) recovery kinetics using 31P magnetic resonance spectroscopy (MRS). Intramyocellular lipid (IMCL) content was assessed in the same muscle using single-voxel 1H MRS. Results: IMCL content tended to be higher in the type 2 diabetes patients when compared with normoglycaemic controls (P=0.06). The 31P MRS parameters for mitochondrial function, i.e. PCr and ADP recovery time constants and maximum aerobic capacity, did not differ between groups. Conclusions: The finding that in vivo skeletal muscle oxidative capacity does not differ between long-standing, insulin-treated type 2 diabetes patients, subjects with early stage type 2 diabetes and sedentary, normoglycaemic controls suggests that mitochondrial dysfunction does not necessarily represent either cause or consequence of insulin resistance and/or type 2 diabetes. © 2008 Society of the European Journal of Endocrinology

    (31)P MR spectroscopy and in vitro markers of oxidative capacity in type 2 diabetes patients

    No full text
    Background: Skeletal muscle mitochondrial function in type 2 diabetes (T2D) is currently being studied intensively. In vivo (31)P magnetic resonance spectroscopy ((31)P MRS) is a noninvasive tool used to measure mitochondrial respiratory function (MIFU) in skeletal muscle tissue. However, microvascular co-morbidity in long-standing T2D can interfere with the (31)P MRS methodology. Aim: To compare (31)P MRS-derived parameters describing in vivo MIFU with an in vitro assessment of muscle respiratory capacity and muscle fiber-type composition in T2D patients. Methods: (31)P MRS was applied in long-standing, insulin-treated T2D patients. (31)P MRS markers of MIFU were measured in the M. vastus lateralis. Muscle biopsy samples were collected from the same muscle and analyzed for succinate dehydrogenase activity (SDH) and fiber-type distribution. Results: Several (31)P MRS parameters of MIFU showed moderate to good correlations with the percentage of type I fibers and type I fiber-specific SDH activity (Pearson's R between 0.70 and 0.75). In vivo and in vitro parameters of local mitochondrial respiration also correlated well with whole-body fitness levels (VO (2peak)) in these patients (Pearson's R between 0.62 and 0.90). Conclusion: Good correlations exist between in vivo and in vitro measurements of MIFU in long-standing insulin-treated T2D subjects, which are qualitatively and quantitatively consistent with previous results measured in healthy subjects. This justifies the use of (31)P MRS to measure MIFU in relation to T2D

    Myofibrillar distribution of succinate dehydrogenase activity and lipid stores differs in skeletal muscle tissue of paraplegic subjects.

    No full text
    Lack of physical activity has been related to an increased risk of developing insulin resistance. This study aimed to assess the impact of chronic muscle deconditioning on whole body insulin sensitivity, muscle oxidative capacity, and intramyocellular lipid (IMCL) content in subjects with paraplegia. Nine subjects with paraplegia and nine able-bodied, lean controls were recruited. An oral glucose tolerance test was performed to assess whole body insulin sensitivity. IMCL content was determined both in vivo and in vitro using 1H-magnetic resonance spectroscopy and fluorescence microscopy, respectively. Muscle biopsy samples were stained for succinate dehydrogenase (SDH) activity to measure muscle fiber oxidative capacity. Subcellular distributions of IMCL and SDH activity were determined by defining subsarcolemmal and intermyofibrillar areas on histological samples. SDH activity was 57 ± 14% lower in muscle fibers derived from subjects with paraplegia when compared with controls (P < 0.05)

    Dietary nitrate does not reduce oxygen cost of exercise or improve muscle mitochondrial function in patients with mitochondrial myopathy

    No full text
    Muscle weakness and exercise intol erance negatively affect the quality of life of patients with mitochondrial myopathy. Short-term dietary nitrate supplementation has been shown to improve exercise performance and reduce oxygen cost of exercise in healthy humans and trained athletes. We investigated whether 1 wk of dietary inorganic nitrate supplementation decreases the oxygen cost of exercise and improves mitochondrial function in patients with mitochondrial myopathy. Ten patients with mitochondrial myopathy (40 ± 5 yr, maximal whole body oxygen uptake = 21.2 ± 3.2 ml·min-1·kg body wt-1, maximal work load = 122 ± 26 W) received 8.5 mg·kg body wt-1·day-1 inorganic nitrate (~7 mmol) for 8 days. Whole body oxygen consumption at 50% of the maximal work load, in vivo skeletal muscle oxidative capacity (evaluated from postexercise phosphocreatine recovery using31P-magnetic resonance spectroscopy), and ex vivo mitochondrial oxidative capacity in permeabilized skinned muscle fibers (measured with high-resolution respirometry) were determined before and after nitrate supplementation. Despite a sixfold increase in plasma nitrate levels, nitrate supplementation did not affect whole body oxygen cost during submaximal exercise. Additionally, no beneficial effects of nitrate were found on in vivo or ex vivo muscle mitochondrial oxidative capacity. This is the first time that the therapeutic potential of dietary nitrate for patients with mitochondrial myopathy was evaluated. We conclude that 1 wk of dietary nitrate supplementation does not reduce oxygen cost of exercise or improve mitochondrial function in the group of patients tested.</p
    corecore