2 research outputs found

    Ride comfort comparison between suspension modes : input towards designing difference threshold experiments during driving

    Get PDF
    Ride comfort is an important topic for on- and off-road suspension design. Difference thresholds of whole-body vibration is important to determine perceptibility of changes in a vehicle’s dynamics. Difference thresholds can be used to guide ride comfort improvements. Difference thresholds have been estimated for vertical and multi-axial seat vibration in laboratory settings. In order to determine the applicability of these laboratory difference thresholds and/or to estimate difference thresholds during driving, it is required that changes can be made in the vehicle’s vibration that is transmitted to the occupants i.e. the stimulus. Ride comfort is quantified by the weighted vertical seat pad vibration and compared between four suspension modes of a vehicle over three roads from ten repeat runs. Significant differences in the median weighted vertical seat pad vibration were found between Mode 1 and the other three modes over Road 1 and Road 2. No significant differences were found over Road 3. The significant differences over Road 1 are in the range of the median relative difference threshold reported in literature. Over Road 2 the differences are below the reported 25th percentile relative difference thresholds. Some combinations of the suspension modes and roads result in ride comfort differences. The suspension mode and road combinations could be used to verify the applicability of available difference thresholds during driving.Paper presented to the 11th Asia-Pacific Regional Conference of the ISTVS, September 26-28, 2022.The European Union Horizon 2020 Framework Program, Marie Skłodowska-Curie actions.http://www.istvs.orghj2023Mechanical and Aeronautical Engineerin

    Programmable Systems for Intelligence in Automobiles (PRYSTINE): Final results after Year 3

    No full text
    Autonomous driving is disrupting the automotive industry as we know it today. For this, fail-operational behavior is essential in the sense, plan, and act stages of the automation chain in order to handle safety-critical situations on its own, which currently is not reached with state-of-the-art approaches.The European ECSEL research project PRYSTINE realizes Fail-operational Urban Surround perceptION (FUSION) based on robust Radar and LiDAR sensor fusion and control functions in order to enable safe automated driving in urban and rural environments. This paper showcases some of the key exploitable results (e.g., novel Radar sensors, innovative embedded control and E/E architectures, pioneering sensor fusion approaches, AI-controlled vehicle demonstrators) achieved until its final year 3
    corecore