38 research outputs found

    Evaluation of synthesized cross linked polyvinyl alcohol as potential disintegrant

    Get PDF
    Purpose: The present study deals with evaluation of crosslinked poly vinyl alcohol (PVA) as a potential disintegrant. Methods: Crosslinking of PVA was carried out using glutaraldehyde as a crosslinker, in presence of acidic conditions. The crosslinking reaction was optimized for a) polymer: crosslinker ratio; b) temperature requirement and c) reaction duration. Certain physical parameters of the disintegrant (including sedimentation volume, hydration capacity, specific surface area and bulk and tap density) were determined and compared to the known disintegrants. Characterization was carried out using FT-IR, DSC, XRD, SEM and Photo microscopy studies. The developed excipient was also studied for acute toxicity in rats and found to be safe for oral use. Results: Disintegration property of formed product was found to give better results. As compared to known disintegrant (Ac-Di-Sol). The disintegration mechanism of developed disintegrant was postulated based on results obtained from various physical evaluations. Hausner's ratio & Carr's index value of 1.12 and 10.61 suggested excellent flowability. Wetting time and distintegration time of 21.90 +/- 0.1 and 26.20 +/- 0.2 seconds was obtained at the disintegrant level of 5 % w/w. Conclusions: By changing the condition parameters of well known crosslinking reaction of PVA, we obtained a crosslinked product which had excellent disintegration activity, good flow and optimal tableting properties

    Design and evaluation of Lumefantrine – Oleic acid self nanoemulsifying ionic complex for enhanced dissolution

    Get PDF
    BACKGROUND: Lumefantrine, an antimalarial molecule has very low and variable bioavailability owing to its extremely poor solubility in water. It is recommended to be taken with milk to enhance its solubility and bioavailability. The aim of present study was to develop a Self Nanoemulsifying Delivery system (SNEDs) of lumefantrine (LF) to achieve rapid and complete dissolution independent of food-fat and surfactant in dissolution media. METHODS: Solubility of LF in oil, co-solvent/co-surfactant and surfactant solution and emulsification efficiency of surfactant were analyzed to optimize the LF loaded self nanoemulsifying preconcentrate. Effect of LF-oleic acid complexation on emulsification, droplet size, zeta potential and dissolution were investigated. Effect of milk concentration and fat content on saturation solubility and dissolution of LF was investigated. Dissolution of marketed formulation and LF-SNEDs was carried out in pH 1.2 and pH 6.8 phosphate buffer. RESULTS: LF exhibited very high solubility in oleic acid owing to complexation between tertiary amine of LF and carboxyl group of oleic acid (OA). Cremophore EL and medium chain monoglyceride were selected surfactant and co-surfactant, respectively. Significantly smaller droplet size (37 nm), shift in zeta potential from negative to positive value, very high drug loading in lipid based system (> 10%), no precipitation after dissolution are the major distinguish characteristics contributed by LF-OA complex in the SNED system. Saturation solubility and dissolution study in milk containing media pointed the significant increment in solubility of LF in the presence of milk-food fat. LF-SNEDs showed > 90% LF release within 30 min in pH 1.2 while marketed tablet showed almost 0% drug release. CONCLUSION: Self nanoemulsification promoting ionic complexation between basic drug and oleic acid hold great promise in enhancing solubility of hydrophobic drugs

    Design of a gastroretentive mucoadhesive dosage form of furosemide for controlled release

    Get PDF
    AbstractThe aim of the present study was to develop and characterize a gastroretentive dosage form suitable for controlled drug release. It consists of a drug loaded polymeric film made up of a bilayer of immediate (IR) and controlled release (CR) layers folded into a hard gelatin capsule. Gastroretention results from unfolding and swelling of the film and its bioadhesion to the gastric mucosa. Furosemide, a drug with a narrow absorption window, was selected as the model drug. Inclusion of hydroxypropyl β-cyclodextrin in both layers and Carbopol® 971P NF in the CR layer of the bilayer film resulted in optimum drug release, bioadhesion and mechanical properties. The film with zig-zag folding in the capsule was shown to unfold and swell under acidic conditions and provide IR of drug over 1h and CR for up to 12h in acidic medium. X-ray diffraction, differential scanning calorimetry and scanning electron microscopy revealed uniform dispersion of furosemide in the polymeric matrices. The results indicate the dosage form is gastroretentive and can provide controlled release of drugs with narrow therapeutic windows

    Design and optimization of self-microemulsifying drug delivery system (SMEDDS) of felodipine for chronotherapeutic application

    Get PDF
    The objective of this research work was to design, develop and optimize the self micro-emulsifying drug delivery system (SMEDDS) of Felodipine (FL) filled in hard gelatine capsule coated with polymer in order to achieve rapid drug release after a desired time lag in the management of hypertension. Microemulsion is composed of a FL, Lauroglycol FCC, Transcutol P and Cremophor EL. The optimum surfactant to co-surfactant ratio was found to be 2:1. The resultant microemulsions have a particle size in the range of 65-85 nm and zeta potential value of -13.71 mV. FL release was adequately adjusted by using pH independent polymer i.e. ethyl cellulose along with dibutyl phthalate as plasticizer. Influence of formulation variables like viscosity of polymer, type of plasticizer and percent coating weight gain was investigated to characterize the time lag. The developed formulation of FL SMEDDS capsules coated with ethyl cellulose showed time lag of 5-7 h which is desirable for chronotherapeutic application.O objetivo desse trabalho de pesquisa foi planejar, desenvolver e otimizar sistema de liberação de fármaco auto-microemulsificante(SMEDDS) de felodipino (FL) em cápsulas de gelatina dura revestidas com polímero, a fim de obter liberação rápida após tempo desejado no manejo da hipertensão. A microemulsão é composta de FL, lauroglilcol FCC, Transcutol P e Cremophor EL. A proporção ótima de tensoativo e de co-tensoativo foi de 2:1. As microemulsões resultantes têm tamanho de partícula na faixa de 65-85 nm com potencial zeta de -13,71 mV. A liberação de FL foi ajustada adequadamente, utilizando-se polímero independente de pH, como etilcelulose com ftalato de dibutila como plastificante. A influência das variáveis da formulação, como viscosidade do polímero, tipo de plastificante e ganho percentual de peso do revestimento foi investigada para caracterizar o intervalo de tempo de liberação. A formulação de cápsulas de FL SMEDDS revestidas com etilcelulose mostrou intervalo de tempo de liberação de 5 a 7 horas, o que é desejável para uma aplicação cronoterapêutica

    Novel bilayer dissolving microneedle arrays with concentrated PLGA nano-microparticles for targeted intradermal delivery: Proof of concept

    Get PDF
    Additional file 3: Figure S2. Comparisons of egg spot contrasts between cuckoo and host eggs for all-eggs-assessments in the parasitized and nearest non-parasitized nests. The plots show the medians, quartiles, 5th and 95th percentiles of the spot contrasts

    Design and optimization of self-microemulsifying drug delivery system (SMEDDS) of felodipine for chronotherapeutic application

    Get PDF
    The objective of this research work was to design, develop and optimize the self micro-emulsifying drug delivery system (SMEDDS) of Felodipine (FL) filled in hard gelatine capsule coated with polymer in order to achieve rapid drug release after a desired time lag in the management of hypertension. Microemulsion is composed of a FL, Lauroglycol FCC, Transcutol P and Cremophor EL. The optimum surfactant to co-surfactant ratio was found to be 2:1. The resultant microemulsions have a particle size in the range of 65-85 nm and zeta potential value of -13.71 mV. FL release was adequately adjusted by using pH independent polymer i.e. ethyl cellulose along with dibutyl phthalate as plasticizer. Influence of formulation variables like viscosity of polymer, type of plasticizer and percent coating weight gain was investigated to characterize the time lag. The developed formulation of FL SMEDDS capsules coated with ethyl cellulose showed time lag of 5-7 h which is desirable for chronotherapeutic application

    Rivastigmine-Loaded L-Lactide-Depsipeptide Polymeric Nanoparticles: Decisive Formulation Variable Optimization

    Get PDF
    The main aim of the investigation was to explore a novel L-lactide-depsipeptide copolymer for the development of rivastigmine-loaded polymeric nanoparticles. L-lactide-depsipeptide synthesis was based on the ring opening polymerization reaction of L-lactide with the cyclodepsipeptide, cyclo(Glc-Leu), using tin 2-ethyl hexanoate as an initiator. Rivastigmine-loaded nanoparticles were prepared by the single emulsion-solvent evaporation technique. The influence of various critical formulation variables like sonication time, amount of polymer, amount of drug, stabilizer concentration, drug-to-polymer ratio, and organic-to-aqueous phase ratio on particle size and entrapment efficiency was studied. The optimized formulation having a particle size of 142.2 ± 21.3 nm with an entrapment efficiency of 60.72 ± 3.72% was obtained. Increased rivastigmine entrapment within the polymer matrix was obtained with a relatively low organic-to-aqueous phase ratio and high drug-to-polymer ratio. A decrease in the average size of the nanoparticles was observed with a decrease in the amount of polymer added and an increase in the sonication time. Prolonged sonication time, however, decreased rivastigmine entrapment. From the different lyoprotectant tested, only trehalose was found to prevent nanoparticle aggregation upon application of the freeze-thaw cycle. Drug incorporation into the polymeric matrix was confirmed by the DSC and XRD study. The spherical nature of the nanoparticles was confirmed by the SEM study. The in vitro drug release study showed the sustained release of more than 90% of the drug up to 72 h. Thus, L-lactide-depsipeptide can be used as an efficient carrier for the nanoparticle preparation of rivastigmine
    corecore