24 research outputs found

    Dense cataract and microphthalmia (dcm) in BALB/c mice is caused by mutations in the GJA8 locus

    Get PDF
    A spontaneous mutation in BALB/c mice that causes congenital dense cataract and microphthalmia (dcm) was reported previously. This abnormality was found to be inheritable and the mode of inheritance indicated that this phenotype is due to mutation of an autosomal recessive gene. We performed genetic screen to identify the underlying mutations through linkage analysis with the dcm progenies of F1 intercross. We identified the region of mutation on chromosome 3 and further mapping and sequence analysis identified the mutation in the GJA8 gene that encodes for connexin 50. The mutation represents a single nucleotide change at position 64 (G to C) that results in a change in the amino acid glycine to arginine at position 22 (G22R) and is identical to the mutation previously characterized as lop10. However, the phenotype of these mice differ from that of lop10 mice and since it is one of the very few genetic models with recessive pattern of inheritance, we propose that dcm mice can serve as a useful model for studying the dynamics and interaction of the gap junction formation in mouse eye development

    A monoclonal antibody against annexin A2 targets stem and progenitor cell fractions in tumors.

    Get PDF
    The involvement of cancer stem cells (CSCs) in driving tumor dormancy and drug resistance is well established. Most therapeutic regimens however are ineffective in targeting these regenerative populations. We report the development and evaluation of a monoclonal antibody, mAb150, which targets the metastasis associated antigen, Annexin A2 (AnxA2) through recognition of a N-terminal epitope. Treatment with mAb150 potentiated re-entry of CSCs into the cell cycle that perturbed tumor dormancy and facilitated targeting of CSCs as was validated by in vitro and in vivo assays. Epigenetic potentiation further improved mAb150 efficacy in achieving total tumor regression by targeting regenerative populations to achieve tumor regression, specifically in high-grade serous ovarian adenocarcinoma

    Autologous Minimally Invasive Cell-Based Therapy for Meniscal and Anterior Cruciate Ligament Regeneration

    No full text
    The meniscus is a fibrocartilaginous tissue that acts as a “shock absorber,” along with performing functions such as stabilization and lubrication of the joint, proprioception, and load distribution. Sudden twisting movements during weight bearing or trauma can cause injury to the menisci, which leads to symptoms such as pain, swelling, and difficulty in performing movements, among others. Conventional pharmacological and surgical treatments are effective in treating the condition; however, do not result in regeneration of healthy tissues. In this report, we highlight the role of cell-based therapy in the management of medial and lateral meniscal and anterior cruciate ligament tears in a patient who was unwilling to undergo surgical treatment. We injected autologous mesenchymal stem cells obtained from the bone marrow and adipose tissue and platelet-rich plasma into the joint of the patient at the area of injury, as well as intravenously. The results of our study corroborate with those previously reported in the literature regarding the improvement in clinical parameters and regeneration of meniscal tissue and ligament. Thus, based on previous literature and improvements noticed in our patient, cell-based therapy can be considered a safe and effective therapeutic modality in the treatment of meniscal tears and cruciate ligament injury.</jats:p

    Cell-based Therapy Approach for Drug-resistant Epilepsy

    Full text link
    Drug-resistant epilepsy (DRE) is a global public health problem. This category includes patients who continue to experience seizures despite long-term anti-epileptic medications. DRE can lead to severe disability and morbidity in older children and adults and is associated with increased risk of mortality than the general population. This report describes the case of a 15-year-old male patient with DRE successfully managed with autologous cell-based and hyperbaric oxygen therapy. The patient underwent two sessions of cell-based therapy consisting of cells derived from the bone marrow, adipose tissue, and peripheral blood followed by neuro-physiotherapy and oxygen therapy. Post-treatment, the patient experienced decrease in the frequency of seizures and reduction in the dosage of anti-epileptic medications. Electroencephalogram taken one year after the therapy revealed improvement in seizure activity. The outcomes in this case may be considered a preliminary finding in formulating more robust treatment strategies using cell-based therapy for DRE.</jats:p

    Autologous Minimally Invasive Cell-Based Therapy for Meniscal and Anterior Cruciate Ligament Regeneration

    No full text
    The meniscus is a fibrocartilaginous tissue that acts as a “shock absorber,” along with performing functions such as stabilization and lubrication of the joint, proprioception, and load distribution. Sudden twisting movements during weight bearing or trauma can cause injury to the menisci, which leads to symptoms such as pain, swelling, and difficulty in performing movements, among others. Conventional pharmacological and surgical treatments are effective in treating the condition; however, do not result in regeneration of healthy tissues. In this report, we highlight the role of cell-based therapy in the management of medial and lateral meniscal and anterior cruciate ligament tears in a patient who was unwilling to undergo surgical treatment. We injected autologous mesenchymal stem cells obtained from the bone marrow and adipose tissue and platelet-rich plasma into the joint of the patient at the area of injury, as well as intravenously. The results of our study corroborate with those previously reported in the literature regarding the improvement in clinical parameters and regeneration of meniscal tissue and ligament. Thus, based on previous literature and improvements noticed in our patient, cell-based therapy can be considered a safe and effective therapeutic modality in the treatment of meniscal tears and cruciate ligament injury
    corecore