3 research outputs found
Diagonal Based Feature Extraction for Handwritten Alphabets Recognition System using Neural Network
An off-line handwritten alphabetical character recognition system using
multilayer feed forward neural network is described in the paper. A new method,
called, diagonal based feature extraction is introduced for extracting the
features of the handwritten alphabets. Fifty data sets, each containing 26
alphabets written by various people, are used for training the neural network
and 570 different handwritten alphabetical characters are used for testing. The
proposed recognition system performs quite well yielding higher levels of
recognition accuracy compared to the systems employing the conventional
horizontal and vertical methods of feature extraction. This system will be
suitable for converting handwritten documents into structural text form and
recognizing handwritten names