3 research outputs found
Intron size correlates positively with recombination rate in Caenorhabditis elegans.
A negative correlation between intron size and recombination rate has been reported for the Drosophila melanogaster and human genomes. Population-genetic models suggest that this pattern could be caused by an interaction between recombination rate and the efficacy of natural selection. To test this idea, we examined variation in intron size and recombination rate across the genome of the nematode Caenorhabditis elegans. Interestingly, we found that intron size correlated positively with recombination rate in this species
Applying Modified VP53A Recombinant Protein as an Anti-White Spot Syndrome Virus Biological Agent in Litopenaeus vannamei Farming
Shrimp farming is an important economic activity. However, due to the spread of pathogens, shrimp aquaculture is becoming increasingly difficult. Many studies have confirmed that white spot syndrome virus (WSSV) recombinant proteins can inhibit viral infection. Among them, VP53 recombinant protein has been found to reduce mortality upon WSSV challenge. This study was conducted in Kaohsiung, Taiwan and reports the first field feeding trial to demonstrate that WSSV recombinant proteins can improve shrimp survival rates at a farming scale. Prior to the feeding trial, the shrimp were confirmed to be slightly infected with WSSV, Vibrio parahaemolyticus strains causing acute hepatopancreatic necrosis disease (AHPND), non-AHPND V. parahaemolyticus strains, and Enterocytozoon hepatopenaei (EHP), which are common pathogens that shrimp farmers often face. The shrimp were then divided into two groups: a control group (C group) fed with a commercial diet and a protein group (P group) fed with the same commercial feed with VP53 recombinant protein. Our findings indicated that the survival rate and expression of immune genes of the P group were higher than those of the C group. The intestinal microbiota of the two groups were also analysed. Collectively, our results confirmed that the recombinant WSSV envelope protein derivative can be used as an effective anti-virus biological agent in shrimp farms
Comparative genomics of Vibrio campbellii strains and core species of the Vibrio Harveyi clade
The core of the Vibrio Harveyi clade contains V. harveyi, V. campbellii, V. owensii, V. jasicida, and V. rotiferianus. They are well recognized aquatic animal pathogens, but misclassification has been common due to similarities in their rDNA sequences and phenotypes. To better understand their evolutionary relationships and functional features, we sequenced a shrimp pathogen strain V. harveyi 1114GL, reclassified it as V. campbellii and compared this and 47 other sequenced Vibrio genomes in the Harveryi clade. A phylogeny based on 1,775 genes revealed that both V. owensii and V. jasicida were closer to V. campbellii than to V. harveyi and that V. campbellii strains can be divided into two distinct groups. Species-specific genes such as intimin and iron acquisition genes were identified in V. campbellii. In particular, the 1114GL strain contains two bacterial immunoglobulin-like genes for cell adhesion with 22 Big_2 domains that have been extensively reshuffled and are by far the most expanded among all species surveyed in this study. The 1114GL strain differed from ATCC BAA-1116 by ~9% at the synonymous sites, indicating high diversity within V. campbellii. Our study revealed the characteristics of V. campbellii in the Harveyi clade and the genetic basis for their wide-spread pathogenicity