124 research outputs found

    PeroxisomeDB 2.0: an integrative view of the global peroxisomal metabolome

    Get PDF
    Peroxisomes are essential organelles that play a key role in redox signalling and lipid homeostasis. They contain a highly diverse enzymatic network among different species, mirroring the varied metabolic needs of the organisms. The previous PeroxisomeDB version organized the peroxisomal proteome of humans and Saccharomyces cerevisiae based on genetic and functional information into metabolic categories with a special focus on peroxisomal disease. The new release (http://www.peroxisomeDB.org) adds peroxisomal proteins from 35 newly sequenced eukaryotic genomes including fungi, yeasts, plants and lower eukaryotes. We searched these genomes for a core ensemble of 139 peroxisomal protein families and identified 2706 putative peroxisomal protein homologs. Approximately 37% of the identified homologs contained putative peroxisome targeting signals (PTS). To help develop understanding of the evolutionary relationships among peroxisomal proteins, the new database includes phylogenetic trees for 2386 of the peroxisomal proteins. Additional new features are provided, such as a tool to capture kinetic information from Brenda, CheBI and Sabio-RK databases and more than 1400 selected bibliographic references. PeroxisomeDB 2.0 is a freely available, highly interactive functional genomics platform that offers an extensive view on the peroxisomal metabolome across lineages, thus facilitating comparative genomics and systems analysis of the organelle

    PEX14 binding to Arabidopsis PEX5 has differential effects on PTS1 and PTS2 cargo occupancy of the receptor

    Get PDF
    PEX5 acts as a cycling receptor for import of PTS1 proteins into peroxisomes and as a co-receptor for PEX7, the PTS2 receptor, but the mechanism of cargo unloading has remained obscure. Using recombinant protein domains we show PEX5 binding to the PEX14N-terminal domain (PEX14N) has no effect on the affinity of PEX5 for a PTS1 containing peptide. PEX5 can form a complex containing both recombinant PTS1 cargo and endogenous PEX7-thiolase simultaneously but isolation of the complex via the PEX14 construct resulted in an absence of thiolase, suggesting a possible role for PEX14 in the unloading of PTS2 cargos

    Alternative Splicing Regulates Targeting of Malate Dehydrogenase in Yarrowia lipolytica

    Get PDF
    Alternative pre-mRNA splicing is a major mechanism contributing to the proteome complexity of most eukaryotes, especially mammals. In less complex organisms, such as yeasts, the numbers of genes that contain introns are low and cases of alternative splicing (AS) with functional implications are rare. We report the first case of AS with functional consequences in the yeast Yarrowia lipolytica. The splicing pattern was found to govern the cellular localization of malate dehydrogenase, an enzyme of the central carbon metabolism. This ubiquitous enzyme is involved in the tricarboxylic acid cycle in mitochondria and in the glyoxylate cycle, which takes place in peroxisomes and the cytosol. In Saccharomyces cerevisiae, three genes encode three compartment-specific enzymes. In contrast, only two genes exist in Y. lipolytica. One gene (YlMDH1, YALI0D16753g) encodes a predicted mitochondrial protein, whereas the second gene (YlMDH2, YALI0E14190g) generates the cytosolic and peroxisomal forms through the alternative use of two 3′-splice sites in the second intron. Both splicing variants were detected in cDNA libraries obtained from cells grown under different conditions. Mutants expressing the individual YlMdh2p isoforms tagged with fluorescent proteins confirmed that they localized to either the cytosolic or the peroxisomal compartment

    Giant peroxisomes in a moss (Physcomitrella patens) peroxisomal biogenesis factor 11 mutant

    Get PDF
    Peroxisomal biogenesis factor 11 (PEX11) proteins are found in yeasts, mammals and plants, and play a role in peroxisome morphology and regulation of peroxisome division. The moss Physcomitrella patens has six PEX11 isoforms which fall into two subfamilies, similar to those found in monocots and dicots. We carried out targeted gene disruption of the Phypa_PEX11-1 gene and compared the morphological and cellular phenotypes of the wild-type and mutant strains. The mutant grew more slowly and the development of gametophores was retarded. Mutant chloronemal filaments contained large cellular structures which excluded all other cellular organelles. Expression of fluorescent reporter proteins revealed that the mutant strain had greatly enlarged peroxisomes up to 10 μm in diameter. Expression of a vacuolar membrane marker confirmed that the enlarged structures were not vacuoles, or peroxisomes sequestered within vacuoles as a result of pexophagy. Phypa_PEX11 targeted to peroxisome membranes could rescue the knock out phenotype and interacted with Fission1 on the peroxisome membrane. Moss PEX11 functions in peroxisome division similar to PEX11 in other organisms but the mutant phenotype is more extreme and environmentally determined, making P. patens a powerful system in which to address mechanisms of peroxisome proliferation and division

    Translatome and metabolome effects triggered by gibberellins during rosette growth in Arabidopsis

    Get PDF
    Although gibberellins (GAs) are well known for their growth control function, little is known about their effects on primary metabolism. Here the modulation of gene expression and metabolic adjustment in response to changes in plant (Arabidopsis thaliana) growth imposed on varying the gibberellin regime were evaluated. Polysomal mRNA populations were profiled following treatment of plants with paclobutrazol (PAC), an inhibitor of GA biosynthesis, and gibberellic acid (GA3) to monitor translational regulation of mRNAs globally. Gibberellin levels did not affect levels of carbohydrates in plants treated with PAC and/or GA3. However, the tricarboxylic acid cycle intermediates malate and fumarate, two alternative carbon storage molecules, accumulated upon PAC treatment. Moreover, an increase in nitrate and in the levels of the amino acids was observed in plants grown under a low GA regime. Only minor changes in amino acid levels were detected in plants treated with GA3 alone, or PAC plus GA3. Comparison of the molecular changes at the transcript and metabolite levels demonstrated that a low GA level mainly affects growth by uncoupling growth from carbon availability. These observations, together with the translatome changes, reveal an interaction between energy metabolism and GA-mediated control of growth to coordinate cell wall extension, secondary metabolism, and lipid metabolism

    Peroxisome biogenesis, protein targeting mechanisms and PEX gene functions in plants

    Get PDF
    Peroxisomes play diverse and important roles in plants. The functions of peroxisomes are dependent upon their steady state protein composition which in turn reflects the balance of formation and turnover of the organelle. Protein import and turnover of constituent peroxisomal proteins is controlled by the state of cell growth and environment. The evolutionary origin of the peroxisome and the role of the endoplasmic reticulum in peroxisome biogenesis is discussed, as informed by studies of the trafficking of peroxisome membrane proteins. The process of matrix protein import in plants and its similarities and differences with peroxisomes in other organisms is presented and discussed in the context of peroxin distribution across the green plants

    S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress

    Get PDF
    Peroxisomes, single-membrane-bounded organelles with essentially oxidative metabolism, are key in plant responses to abiotic and biotic stresses. Recently, the presence of nitric oxide (NO) described in peroxisomes opened the possibility of new cellular functions, as NO regulates diverse biological processes by directly modifying proteins. However, this mechanism has not yet been analysed in peroxisomes. This study assessed the presence of S-nitrosylation in pea-leaf peroxisomes, purified S-nitrosylated peroxisome proteins by immunoprecipitation, and identified the purified proteins by two different mass-spectrometry techniques (matrix-assisted laser desorption/ionization tandem time-of-flight and two-dimensional nano-liquid chromatography coupled to ion-trap tandem mass spectrometry). Six peroxisomal proteins were identified as putative targets of S-nitrosylation involved in photorespiration, β-oxidation, and reactive oxygen species detoxification. The activity of three of these proteins (catalase, glycolate oxidase, and malate dehydrogenase) is inhibited by NO donors. NO metabolism/S-nitrosylation and peroxisomes were analysed under two different types of abiotic stress, i.e. cadmium and 2,4-dichlorophenoxy acetic acid (2,4-D). Both types of stress reduced NO production in pea plants, and an increase in S-nitrosylation was observed in pea extracts under 2,4-D treatment while no total changes were observed in peroxisomes. However, the S-nitrosylation levels of catalase and glycolate oxidase changed under cadmium and 2,4-D treatments, suggesting that this post-translational modification could be involved in the regulation of H2O2 level under abiotic stress

    Covalent Label Transfer Between Peroxisomal Importomer Components Reveals Export-Driven Import Interactions

    Get PDF
    Peroxisomes are vital metabolic organelles found in almost all eukaryotic organisms, and they rely exclusively on import of their matrix protein content from the cytosol. In vitro import of proteins into isolated peroxisomal fractions has provided a wealth of knowledge on the import process. However, the common method of protease protection garnered no information on the import of an N-terminally truncated PEX5 (PEX5C) receptor construct or peroxisomal Malate Dehydrogenase 1 (pMDH1) cargo protein into sunflower peroxisomes, owing to high degrees of protease susceptibility or resistance, respectively. Here, we present a means for analysis of in vitro import through a covalent biotin label transfer, and employ this method to the import of PEX5C. Label transfer demonstrates that PEX5C construct is monomeric in the conditions of the import assay. This technique was capable of identifying the PEX5-PEX14 interaction as the first interaction of the import process through competition experiments. Labelling of the peroxisomal protein import machinery by PEX5C demonstrated that this interaction was independent of added cargo protein, and strikingly, the interaction between PEX5C and the import machinery was shown to be ATP-dependent. These important mechanistic insights highlight the power of label transfer in studying interactions, rather than proteins, of interest, and demonstrate that this technique should be applied to future studies of peroxisomal in vitro import
    corecore