66 research outputs found

    Magnified expansion and compression of subpicosecond pulses from a frequency-doubled Nd:YLF laser

    Get PDF
    Includes bibliographical references.Pulses from a mode-locked frequency-doubled Nd:YLF laser have been spectrally broadened and subsequently expanded to more than 200 ps and recompressed to 750 fs by grating compressors with magnifying telescopes. The new design magnifies the time delay dispersion to a factor 10 times larger than achievable with standard compressors of similar size. The design of the system and its sensitivity to the variations in the position of its optical components is analyzed. The scheme will allow efficient amplification of subpicosecond pulses in dye amplifiers.This work was supported by N.S.F.-CONICET U.S.A./Argentina Cooperative Science Program under Grant INT 8802563, and by the National Science Foundation under Grants ECS 870507 and ECS 8606226. M. C. Marconi was supported by a Fellowship from the Universidad Nacional de Buenos Aires and Consejo Nacional de Investigaciones Cientificas y Tecnicas de la Republica Argentina

    Hall Measurements on Carbon Nanotube Paper Modified With Electroless Deposited Platinum

    Get PDF
    Carbon nanotube paper, sometimes referred to as bucky paper, is a random arrangement of carbon nanotubes meshed into a single robust structure, which can be manipulated with relative ease. Multi-walled carbon nanotubes were used to make the nanotube paper, and were subsequently modified with platinum using an electroless deposition method based on substrate enhanced electroless deposition. This involves the use of a sacrificial metal substrate that undergoes electro-dissolution while the platinum metal deposits out of solution onto the nanotube paper via a galvanic displacement reaction. The samples were characterized using SEM/EDS, and Hall-effect measurements. The SEM/EDS analysis clearly revealed deposits of platinum (Pt) distributed over the nanotube paper surface, and the qualitative elemental analysis revealed co-deposition of other elements from the metal substrates used. When stainless steel was used as sacrificial metal a large degree of Pt contamination with various other metals was observed. Whereas when pure sacrificial metals were used bimetallic Pt clusters resulted. The co-deposition of a bimetallic system upon carbon nanotubes was a function of the metal type and the time of exposure. Hall-effect measurements revealed some interesting fluctuations in sheet carrier density and the dominant carrier switched from N- to P-type when Pt was deposited onto the nanotube paper. Perspectives on the use of the nanotube paper as a replacement to traditional carbon cloth in water electrolysis systems are also discussed

    Effects of incorporation of Cu and Ag in Pd on electrochemical oxidation of methanol in alkaline solution

    No full text
    Pd fine particles were prepared by heterogeneous reaction of PdOx with dry methanol as well as by the NaBH4 reduction method. The former method was found to give Pd nanoparticles (similar to 5 nm). Similarly f.c.c. structured, single phase nanoparticles of alloy compositions Pd0.8Cu0.2, Pd0.5Cu0.5, Pd0.8Ag0.2 and Pd0.5Ag0.5 were prepared by the heterogeneous reaction of dry methanol with intimate mixtures of PdOx + CuOx and PdOx + AgNO3. The electrochemical properties of the porous unsupported electrodes, prepared from these materials, in alkaline solutions, were investigated by cyclic voltammetry and steady-state polarization measurements. Various processes taking place during potential scanning in the presence and absence of methanol in 6 M KOH solution are discussed. Steady-state polarization data indicate that the methanol oxidation reaction (MOR) activity decreases with incorporation of Cu and Ag into the Pd lattice. The extent of decrease in the MOR activity is less for Cu addition than for Ag addition

    Electron yield of glow discharge cathode materials under helium ion bombardment

    Get PDF
    Includes bibliographical references (page 360).The secondary electron emission coefficient of materials for helium ion bombardment in the energy range 0.5-20 keV was measured for the surface conditions of cathodes in high voltage glow discharges. The materials studied are oxidized aluminum, oxidized magnesium, a molybdenum-aluminum oxide sintered composite, molybdenum, stainless steel, copper, gold, and graphite. Each sample was surface conditioned by operating it as cathode of a helium glow discharge shortly before the electron yield measurement. The results are relevant to the modeling of glow discharges and the design of cold cathode electron guns

    CW silver ion laser with electron beam excitation

    Get PDF
    Includes bibliographical references (page 1556).A CW laser power of 140 mW was obtained in the 840.39 nm transition of Ag II by electron beam excitation. This electron beam excited metal vapor ion laser is capable of operating using metals with high vaporization temperatures and is of interest for generation of CW coherent radiation in the 220-260 nm spectral region

    Noninvasive mechanical ventilation: An 18-month experience of two tertiary care hospitals in north India

    No full text
    Background: Noninvasive mechanical ventilation (NIMV) is the delivery of positive pressure ventilation through an interface to upper airways without using the invasive airway. Use of NIMV is becoming common with the increasing recognition of its benefits. Objectives: This study was done to evaluate the feasibility and outcome of NIMV in tertiary care centres. Materials and Methods: An observational, retrospective study conducted over a period of 18 months in two tertiary level hospitals of north India on 184 consecutive patients who were treated by NIMV, regardless of the indication. NIMV was given in accordance with the arterial blood gas (ABG) parameters defining respiratory failure (Type 1/Type 2). Results: The most common indication of NIMV in our hospitals was acute exacerbation of chronic obstructive pulmonary disease (AE-COPD 80.43%), and 90.54% AE-COPD patients were improved by NIMV. Application of NIMV resulted in significant improvement of pH and blood gases in COPD patients, while non-COPD patients showed significant improvement in partial pressure of oxygen (PaO 2 ) alone. The mean duration of NIMV was 8.35 ± 5.98 days, and patients of interstitial lung disease (ILD) were on NIMV for the maximum duration (17 ± 8.48 days). None of the patients of acute respiratory distress syndrome were cured by NIMV; 13.04% patients on NIMV required intubation and mechanical ventilation. Conclusion: This study demonstrates and encourages the use of NIMV as the first-line ventilatory treatment in AE-COPD patients with respiratory failure. It also supports NIMV usage in other causes of respiratory failure as a promising step toward prevention of mechanical ventilation
    corecore