2,153 research outputs found

    Linear and Nonlinear Optical Properties of Mn doped Benzimidazole Thin Films

    Full text link
    In the present work, the Mn doped benzimidazole (BMZ) thin films were prepared by simple chemical bath deposition technique. The material was directly deposited as thin film on glass substrates and the metal concentration in the solution was varied in weight percentage in order to investigate the dopant effect on the properties of thin films. Similarly, the Mn doped BMZ films were deposited in different solution temperature to study the effect of deposition temperature on the properties of thin films. The PXRD and FT-IR spectroscopy are used to study the structural and the presence of functional groups in the BMZ medium. Depending upon the solution temperature, thickness of the films varying from 0.6 to 1.2 {\mu}m and the optical transparency of the samples increases with the increasing temperature up to 50 {\deg}C. Second Harmonic Generation (SHG) efficiency of the films is measured for all the films. Third order nonlinear optical properties of the films were analyzed using Z-scan technique. The experimental results show that Mn doped BMZ films exhibits saturation absorption and negative nonlinearity.Comment: This has been presented in DAE 58th Solid State Symposium held at Thapar University, Patiala, Punjab, India. Will be published in AIP conference proceedings soo

    Magnetization of La(2-x)Sr(x)NiO(4+ delta) (0 < x < 0.5) and observation of novel memory effects

    Full text link
    We have studied the magnetization of a series of spin-charge ordered La(2-x)Sr(x)NiO(4+delta) single crystals with 0 < x < 0.5. For fields applied parallel to the ab plane there is a large irreversibility below a temperature T(F1) ~ 50 K and a smaller irreversibility that persists up to near the charge ordering temperature. We observed a novel memory effect in the thermo-remnant magnetization across the entire doping range. We found that these materials retain a memory of the temperature at which an external field was removed, and that there is a pronounced increase in the thermo-remnant magnetization when the system is warmed through a spin reorientation transition.Comment: 11 pages, 12 figure

    Brownian Motion and Quantum Dynamics of Magnetic Monopoles in Spin Ice

    Get PDF
    Spin ice illustrates many unusual magnetic properties, including zero point entropy, emergent monopoles and a quasi liquid-gas transition. To reveal the quantum spin dynamics that underpin these phenomena is an experimental challenge. Here we show how crucial information is contained in the frequency dependence of the magnetic susceptibility and in its high frequency or adiabatic limit. These measures indicate that monopole diffusion is strictly Brownian but is underpinned by spin tunnelling and is influenced by collective monopole interactions. We also find evidence of driven monopole plasma oscillations in weak applied field, and unconventional critical behaviour in strong applied field. Our results resolve contradictions in the present understanding of spin ice, reveal unexpected physics and establish adiabatic susceptibility as a revealing characteristic of exotic spin systems.Comment: Main : 12 pages, 6 figures. Supplementary Information : 10 pages, 7 figures. Manuscript submitte

    Spin reorientation transition in the incommensurate stripe-ordered phase of La3/2Sr1/2NiO4

    Full text link
    The spin ordering of La3/2Sr1/2NiO4 was investigated by magnetization measurements, and by unpolarized- and polarized-neutron diffraction. Spin ordering with an incommensurability epsilon ~ 0.445 is observed below T_so ~ 80 K. On cooling, a spin reorientation is observed at 57 +/- 1 K, with the spin axes rotating from 52 +/- 4 degrees to 78 +/- 3 degrees. This is the first time a spin reorientation has been observed in a La2-xSrxNiO4+delta compound having incommensurate stripe order.Comment: REVTex 4. 4 pages including 4 figures. Minor changes to text. Accepted to be published in Physical Review

    Approaching the quantum critical point in a highly-correlated all-in-all-out antiferromagnet

    Get PDF
    Continuous quantum phase transition involving all-in–all-out (AIAO) antiferromagnetic order in strongly spin-orbit-coupled 5d compounds could give rise to various exotic electronic phases and strongly-coupled quantum critical phenomena. Here we experimentally trace the AIAO spin order in Sm₂Ir₂O₇ using direct resonant x-ray magnetic diffraction techniques under high pressure. The magnetic order is suppressed at a critical pressure P_c=6.30GPa, while the lattice symmetry remains in the cubic Fd−3m space group across the quantum critical point. Comparing pressure tuning and the chemical series R₂Ir₂O₇ reveals that the approach to the AIAO quantum phase transition is characterized by contrasting evolutions of the pyrochlore lattice constant a and the trigonal distortion surrounding individual Ir moments, which affects the 5d bandwidth and the Ising anisotropy, respectively. We posit that the opposite effects of pressure and chemical tuning lead to spin fluctuations with different Ising and Heisenberg character in the quantum critical region. Finally, the observed low pressure scale of the AIAO quantum phase transition in Sm₂Ir₂O₇ identifies a circumscribed region of P-T space for investigating the putative magnetic Weyl semimetal state

    Magnetic spectrum of the two-dimensional antiferromagnet La2CoO4 studied by inelastic neutron scattering

    Full text link
    We report measurements of the magnetic excitation spectrum of the layered antiferromagnet La2CoO4 by time-of-flight neutron inelastic scattering. In the energy range probed in our experiments (0-250 meV) the magnetic spectrum consists of spin-wave modes with strong in-plane dispersion extending up to 60 meV, and a nearly dispersionless peak at 190 meV. The spin-wave modes exhibit a small (~1 meV) dispersion along the magnetic zone boundary. We show that the magnetic spectrum can be described very well by a model of a Heisenberg antiferromagnet that includes the full spin and orbital degrees of freedom of Co2+ in an axially-distorted crystal field. The collective magnetic dynamics are found to be controlled by dominant nearest-neighbour exchange interactions, strong XY-like single-ion anisotropy and a substantial unquenched orbital angular momentum.Comment: 8 pages, 7 figure

    Development of the Magnetic Excitations of Charge-Stripe Ordered La(2-x)Sr(x)NiO(4) on Doping Towards Checkerboard Charge Order

    Get PDF
    The magnetic excitation spectrums of charge stripe ordered La(2-x)Sr(x)NiO(4) x = 0.45 and x = 0.4 were studied by inelastic neutron scattering. We found the magnetic excitation spectrum of x = 0.45 from the ordered Ni^2+ S = 1 spins to match that of checkerboard charge ordered La(1.5)Sr(0.5)NiO(4). The distinctive asymmetry in the magnetic excitations above 40 meV was observed for both doping levels, but an additional ferromagnetic mode was observed in x = 0.45 and not in the x = 0.4. We discuss the origin of crossover in the excitation spectrum between x = 0.45 and x = 0.4 with respect to discommensurations in the charge stripe structure.Comment: 4 Figures. To be appear in the J. Kor. Phys. Soc. as a proceedings paper from the ICM 2012 conferenc

    The Temperature Evolution of the Out-of-Plane Correlation Lengths of Charge-Stripe Ordered La(1.725)Sr(0.275)NiO(4)

    Full text link
    The temperature dependence of the magnetic order of stripe-ordered La(1.725)Sr(0.275)NiO(4) is investigated by neutron diffraction. Upon cooling, the widths if the magnetic Bragg peaks are observed to broaden. The degree of broadening is found to be very different for l = odd-integer and l = even-integer magnetic peaks. We argue that the observed behaviour is a result of competition between magnetic and charge order.Comment: 3 figure
    • …
    corecore