828 research outputs found

    Ed-Fed: A generic federated learning framework with resource-aware client selection for edge devices

    Full text link
    Federated learning (FL) has evolved as a prominent method for edge devices to cooperatively create a unified prediction model while securing their sensitive training data local to the device. Despite the existence of numerous research frameworks for simulating FL algorithms, they do not facilitate comprehensive deployment for automatic speech recognition tasks on heterogeneous edge devices. This is where Ed-Fed, a comprehensive and generic FL framework, comes in as a foundation for future practical FL system research. We also propose a novel resource-aware client selection algorithm to optimise the waiting time in the FL settings. We show that our approach can handle the straggler devices and dynamically set the training time for the selected devices in a round. Our evaluation has shown that the proposed approach significantly optimises waiting time in FL compared to conventional random client selection methods

    Hybrid-SD (H_SD): A new hybrid evaluation metric for automatic speech recognition tasks

    Full text link
    Many studies have examined the shortcomings of word error rate (WER) as an evaluation metric for automatic speech recognition (ASR) systems, particularly when used for spoken language understanding tasks such as intent recognition and dialogue systems. In this paper, we propose Hybrid-SD (H_SD), a new hybrid evaluation metric for ASR systems that takes into account both semantic correctness and error rate. To generate sentence dissimilarity scores (SD), we built a fast and lightweight SNanoBERT model using distillation techniques. Our experiments show that the SNanoBERT model is 25.9x smaller and 38.8x faster than SRoBERTa while achieving comparable results on well-known benchmarks. Hence, making it suitable for deploying with ASR models on edge devices. We also show that H_SD correlates more strongly with downstream tasks such as intent recognition and named-entity recognition (NER)

    PreMa: Predictive Maintenance of Solenoid Valve in Real-Time at Embedded Edge-Level

    Full text link
    In industrial process automation, sensors (pressure, temperature, etc.), controllers, and actuators (solenoid valves, electro-mechanical relays, circuit breakers, motors, etc.) make sure that production lines are working under the pre-defined conditions. When these systems malfunction or sometimes completely fail, alerts have to be generated in real-time to make sure not only production quality is not compromised but also safety of humans and equipment is assured. In this work, we describe the construction of a smart and real-time edge-based electronic product called PreMa, which is basically a sensor for monitoring the health of a Solenoid Valve (SV). PreMa is compact, low power, easy to install, and cost effective. It has data fidelity and measurement accuracy comparable to signals captured using high end equipment. The smart solenoid sensor runs TinyML, a compact version of TensorFlow (a.k.a. TFLite) machine learning framework. While fault detection inferencing is in-situ, model training uses mobile phones to accomplish the `on-device' training. Our product evaluation shows that the sensor is able to differentiate between the distinct types of faults. These faults include: (a) Spool stuck (b) Spring failure and (c) Under voltage. Furthermore, the product provides maintenance personnel, the remaining useful life (RUL) of the SV. The RUL provides assistance to decide valve replacement or otherwise. We perform an extensive evaluation on optimizing metrics related to performance of the entire system (i.e. embedded platform and the neural network model). The proposed implementation is such that, given any electro-mechanical actuator with similar transient response to that of the SV, the system is capable of condition monitoring, hence presenting a first of its kind generic infrastructure

    Interaction of Oleate Molecules on Sillimanite and Garnet minerals.

    Get PDF
    Adsorption of oleate on sillimanite and garnet was studied using electrokinetic measurements. Both the systems exhibit a characteristic shift in iep by increasing the concentration of oleate in solution. This shift in iep has been quantified in terms of specific interaction between the surface sites and oleate molecules. The shift in iep was estimated separately for both the systems using the equation derived on the basis of electrical double layer theory. The specific free energy of adsorption was estimated to be 7.94 kcal/mole for sillimanite-oleate system and 7.49 kcal/mole for gamet-oleate system

    MobileASR: A resource-aware on-device learning framework for user voice personalization applications on mobile phones

    Full text link
    We describe a comprehensive methodology for developing user-voice personalized automatic speech recognition (ASR) models by effectively training models on mobile phones, allowing user data and models to be stored and used locally. To achieve this, we propose a resource-aware sub-model-based training approach that considers the RAM, and battery capabilities of mobile phones. By considering the evaluation metric and resource constraints of the mobile phones, we are able to perform efficient training and halt the process accordingly. To simulate real users, we use speakers with various accents. The entire on-device training and evaluation framework was then tested on various mobile phones across brands. We show that fine-tuning the models and selecting the right hyperparameter values is a trade-off between the lowest achievable performance metric, on-device training time, and memory consumption. Overall, our methodology offers a comprehensive solution for developing personalized ASR models while leveraging the capabilities of mobile phones, and balancing the need for accuracy with resource constraints.Comment: Accepted in AIMLSystems 202
    • …
    corecore