329 research outputs found

    Pathwise stochastic integrals for model free finance

    Full text link
    We present two different approaches to stochastic integration in frictionless model free financial mathematics. The first one is in the spirit of It\^o's integral and based on a certain topology which is induced by the outer measure corresponding to the minimal superhedging price. The second one is based on the controlled rough path integral. We prove that every "typical price path" has a naturally associated It\^o rough path, and justify the application of the controlled rough path integral in finance by showing that it is the limit of non-anticipating Riemann sums, a new result in itself. Compared to the first approach, rough paths have the disadvantage of severely restricting the space of integrands, but the advantage of being a Banach space theory. Both approaches are based entirely on financial arguments and do not require any probabilistic structure.Comment: Published at http://dx.doi.org/10.3150/15-BEJ735 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Rough differential equations driven by signals in Besov spaces

    Full text link
    Rough differential equations are solved for signals in general Besov spaces unifying in particular the known results in H\"older and p-variation topology. To this end the paracontrolled distribution approach, which has been introduced by Gubinelli, Imkeller and Perkowski ["Paracontrolled distribution and singular PDEs", Forum of Mathematics, Pi (2015)] to analyze singular stochastic PDEs, is extended from H\"older to Besov spaces. As an application we solve stochastic differential equations driven by random functions in Besov spaces and Gaussian processes in a pathwise sense.Comment: Former title: "Rough differential equations on Besov spaces", 37 page

    Local times for typical price paths and pathwise Tanaka formulas

    Full text link
    Following a hedging based approach to model free financial mathematics, we prove that it should be possible to make an arbitrarily large profit by investing in those one-dimensional paths which do not possess local times. The local time is constructed from discrete approximations, and it is shown that it is α\alpha-H\"older continuous for all α<1/2\alpha<1/2. Additionally, we provide various generalizations of F\"ollmer's pathwise It\^o formula

    Optimal extension to Sobolev rough paths

    Full text link
    We show that every Rd\mathbb{R}^d-valued Sobolev path with regularity α\alpha and integrability pp can be lifted to a Sobolev rough path in the sense of T. Lyons provided α>1/p>0\alpha >1/p>0. Moreover, we prove the existence of unique rough path lifts which are optimal w.r.t. strictly convex functionals among all possible rough path lifts given a Sobolev path. As examples, we consider the rough path lift with minimal Sobolev norm and characterize the Stratonovich rough path lift of a Brownian motion as optimal lift w.r.t. to a suitable convex functional. Generalizations of the results to Besov spaces are briefly discussed.Comment: Typos fixed. To appear in Potential Analysi

    An FBSDE approach to the Skorokhod embedding problem for Gaussian processes with non-linear drift

    Full text link
    We solve the Skorokhod embedding problem for a class of Gaussian processes including Brownian motion with non-linear drift. Our approach relies on solving an associated strongly coupled system of Forward Backward Stochastic Differential Equation (FBSDE), and investigating the regularity of the obtained solution. For this purpose we extend the existence, uniqueness and regularity theory of so called decoupling fields for Markovian FBSDE to a setting in which the coefficients are only locally Lipschitz continuous

    Obituary Walter Deuber (1942–1999)

    Get PDF

    Duality for pathwise superhedging in continuous time

    Get PDF
    We provide a model-free pricing-hedging duality in continuous time. For a frictionless market consisting of dd risky assets with continuous price trajectories, we show that the purely analytic problem of finding the minimal superhedging price of a path dependent European option has the same value as the purely probabilistic problem of finding the supremum of the expectations of the option over all martingale measures. The superhedging problem is formulated with simple trading strategies, the claim is the limit inferior of continuous functions, which allows for upper and lower semi-continuous claims, and superhedging is required in the pathwise sense on a σ\sigma-compact sample space of price trajectories. If the sample space is stable under stopping, the probabilistic problem reduces to finding the supremum over all martingale measures with compact support. As an application of the general results we deduce dualities for Vovk's outer measure and semi-static superhedging with finitely many securities

    On the editing distance of graphs

    Get PDF
    An edge-operation on a graph GG is defined to be either the deletion of an existing edge or the addition of a nonexisting edge. Given a family of graphs G\mathcal{G}, the editing distance from GG to G\mathcal{G} is the smallest number of edge-operations needed to modify GG into a graph from G\mathcal{G}. In this paper, we fix a graph HH and consider Forb(n,H){\rm Forb}(n,H), the set of all graphs on nn vertices that have no induced copy of HH. We provide bounds for the maximum over all nn-vertex graphs GG of the editing distance from GG to Forb(n,H){\rm Forb}(n,H), using an invariant we call the {\it binary chromatic number} of the graph HH. We give asymptotically tight bounds for that distance when HH is self-complementary and exact results for several small graphs HH
    corecore