12 research outputs found

    Staphylococcal Panton-Valentine Leucocidin as a Major Virulence Factor Associated to Furuncles

    Get PDF
    Panton-Valentine Leucocidin (PVL), one of the β-barrel pore-forming staphylococcal leucotoxins, is known to be associated to furuncles and some severe community pneumonia. However, it is still uncertain how many other virulence factors are also associated to furuncles and what the risk factors of furuncles are in immuno-compromised status of patients, especially the HIV (+) patients. In this paper, we use antigen immunoprecipitation and multiplex PCR approach to determine the presence of 19 toxins, 8 adhesion factors and the PFGE profiles associated to furuncles in three independent patient study groups of S. aureus (SA) isolates collected from the Cayenne General Hospital (French Guiana). The patient groups were made of: 16 isolates from HIV (−) patients, 9 from HIV (+) patients suffering from furuncles, and 30 control isolates from patients with diverse secondary infected dermatitis. Our data reveals that the majority (96%) of SA strains isolated from HIV patient-derived furuncles significantly produced PVL (p<10−7), whereas only 10% of SA strains produced this toxin in secondary infected dermatosis. A high prevalence of LukE-LukD-producing isolates (56 to 78%) was recorded in patient groups. Genes encoding clumping factor B, collagen- and laminin-binding proteins (clfB, cna, lbp, respectively) were markedly frequent (30 to 55%), without being associated to a specific group. Pulse field gel electrophoresis evidenced 24 overall pulsotypes, whereas the 25 PVL-producing isolates were distributed into 15 non clonal fingerprints. These pulsotypes were not specific PVL-producing isolates. PVL appears to be the major virulence factor associated to furuncles in Europe and in South America regardless of the immune status of the HIV patients

    Analyse automatique des données scripturales prétraitées par des outils de visualization

    Get PDF
    RÉSUMÉ: Plusieurs méthodes pour analyser le processus d'écriture ont été utilisés afin de comprendre les stratégies des scripteurs. L'outil principal pour analyser le processus d'écriture est le fichier log, qui contient de façon exhaustive et détaillée l'ensemble des opérations effectuées par le scripteur lors de la rédaction d'un texte. Les données qui y sont emmagasinées sont de quantité considérable et lorsqu'elles ne sont pas préalablement traitées, elles sont hostiles à être analysées par l'humain. Parmi les outils d'analyse utilisés, les représentations du processus d'écriture permettent l'agrégation des données grâce à un pré-traitement. Les structures sous-jacentes des données ainsi représentées sont généralement plus propices à l'analyse que les données brutes. Cet article vise à démontrer différentes méthodes d'analyse automatique pouvant être appliquées à ces structures afin de trouver ou confirmer des structures et tendances à travers les données. ABSTRACT: Several methods to analyze the writing process were used in order to understand the strategies of the writers. The main tool to analyze the writing process is the log file which contains all the operations performed by the writer when writing a text, in a comprehensive and detailed way. The data stored in it is of considerable amount and when not previously treated, it is not made to be analyzed by humans. Among the analytical tools used, the representations of the writing process allow aggregation of data through a pre-treatment. The underlying data structures as shown by these tools are generally conducive to analyzing the raw data afterwards. This article aims to demonstrate various automatic analysis methods that can be applied to these structures to find or confirm the structures and trends through data

    Two Chromogranin A-Derived Peptides Induce Calcium Entry in Human Neutrophils by Calmodulin-Regulated Calcium Independent Phospholipase A2

    Get PDF
    Background: Antimicrobial peptides derived from the natural processing of chromogranin A (CgA) are co-secreted with catecholamines upon stimulation of chromaffin cells. Since PMNs play a central role in innate immunity, we examine responses by PMNs following stimulation by two antimicrobial CgA-derived peptides. Methodology/Principal Findings: PMNs were treated with different concentrations of CgA-derived peptides in presence of several drugs. Calcium mobilization was observed by using flow cytometry and calcium imaging experiments. Immunocytochemistry and confocal microscopy have shown the intracellular localization of the peptides. The calmodulin-binding and iPLA2 activating properties of the peptides were shown by Surface Plasmon Resonance and iPLA2 activity assays. Finally, a proteomic analysis of the material released after PMNs treatment with CgA-derived peptides was performed by using HPLC and Nano-LC MS-MS. By using flow cytometry we first observed that after 15 s, in presence of extracellular calcium, Chromofungin (CHR) or Catestatin (CAT) induce a concentration-dependent transient increase of intracellular calcium. In contrast, in absence of extra cellular calcium the peptides are unable to induce calcium depletion from the stores after 10 minutes exposure. Treatment with 2-APB (2-aminoethoxydiphenyl borate), a store operated channels (SOCs) blocker, inhibits completely the calcium entry, as shown by calcium imaging. We also showed that they activate iPLA2 as the two CaM-binding factors (W7 and CMZ) and that the two sequences can be aligned with the two CaMbinding domains reported for iPLA2. We finally analyzed by HPLC and Nano-LC MS-MS the material released by PMNs following stimulation by CHR and CAT. We characterized several factors important for inflammation and innate immunity. Conclusions/Significance: For the first time, we demonstrate that CHR and CAT, penetrate into PMNs, inducing extracellular calcium entry by a CaM-regulated iPLA2 pathway. Our study highlights the role of two CgA-derived peptides in the active communication between neuroendocrine and immune systems

    J. Clin. Microbiol.

    No full text
    Currently, few techniques are available for the evaluation of bacterial biofilm adhesion. These detection tools generally require time for culture and/or arduous handling steps. In this work, the BioFilm Ring Test (BRT), a new technology, was used to estimate the biofilm formation kinetics of 25 strains of Pseudomonas aeruginosa, isolated from the sputum of cystic fibrosis (CF) patients. The principle of the new assay is based on the mobility measurement of magnetic microbeads mixed with a bacterial suspension in a polystyrene microplate. If free to move under the magnetic action, particles gather to a visible central spot in the well bottom. Therefore, the absence of spot formation in the plate reflects the bead immobilization by a biofilm in formation. The BRT device allowed us to classify the bacterial strains into three general adhesion profiles. Group 1 consists of bacteria, which are able to form a solid biofilm in <2 h. Group 2 comprises the strains that progressively set up a biofilm during 24 h. Lastly, group 3 includes the strains that stay in a planktonic form. The grouping of our strains did not differ according to culture conditions, i.e., the use of different sets of beads or culture media. The BRT is shown to be an informative tool for the characterization of biofilm-forming bacteria. Various application perspectives may be investigated for this device, such as the addition of antibiotics to the bacterial suspension to select which would have the ability to inhibit the biofilm formation
    corecore