87 research outputs found

    Curation of characterized glycoside hydrolases of Fungal origin

    Get PDF
    Fungi produce a wide range of extracellular enzymes to break down plant cell walls, which are composed mainly of cellulose, lignin and hemicellulose. Among them are the glycoside hydrolases (GH), the largest and most diverse family of enzymes active on these substrates. To facilitate research and development of enzymes for the conversion of cell-wall polysaccharides into fermentable sugars, we have manually curated a comprehensive set of characterized fungal glycoside hydrolases. Characterized glycoside hydrolases were retrieved from protein and enzyme databases, as well as literature repositories. A total of 453 characterized glycoside hydrolases have been cataloged. They come from 131 different fungal species, most of which belong to the phylum Ascomycota. These enzymes represent 46 different GH activities and cover 44 of the 115 CAZy GH families. In addition to enzyme source and enzyme family, available biochemical properties such as temperature and pH optima, specific activity, kinetic parameters and substrate specificities were recorded. To simplify comparative studies, enzyme and species abbreviations have been standardized, Gene Ontology terms assigned and reference to supporting evidence provided. The annotated genes have been organized in a searchable, online database called mycoCLAP (Characterized Lignocellulose-Active Proteins of fungal origin). It is anticipated that this manually curated collection of biochemically characterized fungal proteins will be used to enhance functional annotation of novel GH genes

    Carbohydrate esterase family 16 contains fungal hemicellulose acetyl esterases (HAEs) with varying specificity

    Get PDF
    Acetyl esterases are an important component of the enzymatic machinery fungi use to degrade plant biomass and are classified in several Carbohydrate Esterase families of the CAZy classification system. Carbohydrate Esterase family 16 (CE16) is one of the more recently discovered CAZy families, but only a small number of its enzyme members have been characterized so far, revealing activity on xylan-derived oligosaccharides, as well as activity related to galactoglucomannan. The number of CE16 genes differs significantly in the genomes of filamentous fungi. In this study, four CE16 members were identified in the genome of Aspergillus niger NRRL3 and it was shown that they belong to three of the four phylogenetic Clades of CE16. Significant differences in expression profiles of the genes and substrate specificity of the enzymes were revealed, demonstrating the diversity within this family of enzymes. Detailed characterization of one of these four A. niger enzymes (HaeA) demonstrated activity on oligosaccharides obtained from acetylated glucuronoxylan, galactoglucomannan and xyloglucan, thus establishing this enzyme as a general hemicellulose acetyl esterase. Their broad substrate specificity makes these enzymes highly interesting for biotechnological applications in which deacetylation of polysaccharides is required.Peer reviewe

    Carbohydrate esterase family 16 contains fungal hemicellulose acetyl esterases (HAEs) with varying specificity

    Get PDF
    Acetyl esterases are an important component of the enzymatic machinery fungi use to degrade plant biomass and are classified in several Carbohydrate Esterase families of the CAZy classification system. Carbohydrate Esterase family 16 (CE16) is one of the more recently discovered CAZy families, but only a small number of its enzyme members have been characterized so far, revealing activity on xylan-derived oligosaccharides, as well as activity related to galactoglucomannan. The number of CE16 genes differs significantly in the genomes of filamentous fungi. In this study, four CE16 members were identified in the genome of Aspergillus niger NRRL3 and it was shown that they belong to three of the four phylogenetic Clades of CE16. Significant differences in expression profiles of the genes and substrate specificity of the enzymes were revealed, demonstrating the diversity within this family of enzymes. Detailed characterization of one of these four A. niger enzymes (HaeA) demonstrated activity on oligosaccharides obtained from acetylated glucuronoxylan, galactoglucomannan and xyloglucan, thus establishing this enzyme as a general hemicellulose acetyl esterase. Their broad substrate specificity makes these enzymes highly interesting for biotechnological applications in which deacetylation of polysaccharides is required

    Fungal enzyme sets for plant polysaccharide degradation

    Get PDF
    Enzymatic degradation of plant polysaccharides has many industrial applications, such as within the paper, food, and feed industry and for sustainable production of fuels and chemicals. Cellulose, hemicelluloses, and pectins are the main components of plant cell wall polysaccharides. These polysaccharides are often tightly packed, contain many different sugar residues, and are branched with a diversity of structures. To enable efficient degradation of these polysaccharides, fungi produce an extensive set of carbohydrate-active enzymes. The variety of the enzyme set differs between fungi and often corresponds to the requirements of its habitat. Carbohydrate-active enzymes can be organized in different families based on the amino acid sequence of the structurally related catalytic modules. Fungal enzymes involved in plant polysaccharide degradation are assigned to at least 35 glycoside hydrolase families, three carbohydrate esterase families and six polysaccharide lyase families. This mini-review will discuss the enzymes needed for complete degradation of plant polysaccharides and will give an overview of the latest developments concerning fungal carbohydrate-active enzymes and their corresponding families

    Nucleotide sequence and functional analysis of the complete phenol/3,4-dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600.

    Full text link
    The meta-cleavage pathway for catechol is one of the major routes for the microbial degradation of aromatic compounds. Pseudomonas sp. strain CF600 grows efficiently on phenol, cresols, and 3,4-dimethylphenol via a plasmid-encoded multicomponent phenol hydroxylase and a subsequent meta-cleavage pathway. The genes for the entire pathway were previously found to be clustered, and the nucleotide sequences of dmpKLMNOPBC and D, which encode the first four biochemical steps of the pathway, were determined. By using a combination of deletion mapping, nucleotide sequence determinations, and polypeptide analysis, we identified the remaining six genes of the pathway. The fifteen genes, encoded in the order dmpKLMNOPQBCDEFGHI, lie in a single operon structure with intergenic spacing that varies between 0 to 70 nucleotides. Homologies found between the newly determined gene sequences and known genes are reported. Enzyme activity assays of deletion derivatives of the operon expressed in Escherichia coli were used to correlate dmpE, G, H, and I with known meta-cleavage enzymes. Although the function of the dmpQ gene product remains unknown, dmpF was found to encode acetaldehyde dehydrogenase (acylating) activity (acetaldehyde:NAD+ oxidoreductase [coenzyme A acylating]; E.C.1.2.1.10). The role of this previously unknown meta-cleavage pathway enzyme is discussed
    corecore