153 research outputs found
I Found it at the Library
Ron Powers describes his view of libraries during a talk to the Friends of the University of Missouri Library
Geometric Latent Diffusion Models for 3D Molecule Generation
Generative models, especially diffusion models (DMs), have achieved promising
results for generating feature-rich geometries and advancing foundational
science problems such as molecule design. Inspired by the recent huge success
of Stable (latent) Diffusion models, we propose a novel and principled method
for 3D molecule generation named Geometric Latent Diffusion Models (GeoLDM).
GeoLDM is the first latent DM model for the molecular geometry domain, composed
of autoencoders encoding structures into continuous latent codes and DMs
operating in the latent space. Our key innovation is that for modeling the 3D
molecular geometries, we capture its critical roto-translational equivariance
constraints by building a point-structured latent space with both invariant
scalars and equivariant tensors. Extensive experiments demonstrate that GeoLDM
can consistently achieve better performance on multiple molecule generation
benchmarks, with up to 7\% improvement for the valid percentage of large
biomolecules. Results also demonstrate GeoLDM's higher capacity for
controllable generation thanks to the latent modeling. Code is provided at
\url{https://github.com/MinkaiXu/GeoLDM}.Comment: Published at ICML 202
Predicting future left anterior descending artery events from non-culprit lesions:insights from the Lipid-Rich Plaque study
AIMS: The left anterior descending (LAD) artery is the most frequently affected site by coronary artery disease. The prospective Lipid Rich Plaque (LRP) study, which enrolled patients undergoing imaging of non-culprits followed over 2 years, reported the successful identification of coronary segments at risk of future events based on near-infrared spectroscopy-intravascular ultrasound (NIRS-IVUS) lipid signals. We aimed to characterize the plaque events involving the LAD vs. non-LAD segments. METHODS AND RESULTS: LRP enrolled 1563 patients from 2014 to 2016. All adjudicated plaque events defined by the composite of cardiac death, cardiac arrest, non-fatal myocardial infarction, acute coronary syndrome, revascularization by coronary bypass or percutaneous coronary intervention, and rehospitalization for angina with >20% stenosis progression and reported as non-culprit lesion-related major adverse cardiac events (NC-MACE) were classified by NIRS-IVUS maxLCBI4 mm (maximum 4-mm Lipid Core Burden Index) ≤400 or >400 and association with high-risk-plaque characteristics, plaque burden ≥70%, and minimum lumen area (MLA) ≤4 mm2. Fifty-seven events were recorded with more lipid-rich plaques in the LAD vs. left circumflex and right coronary artery; 12.5% vs. 10.4% vs. 11.3%, P = 0.097. Unequivocally, a maxLCBI4 mm >400 in the LAD was more predictive of NC-MACE [hazard ratio (HR) 4.32, 95% confidence interval (CI) (1.93-9.69); P = 0.0004] vs. [HR 2.56, 95% CI (1.06-6.17); P = 0.0354] in non-LAD segments. MLA ≤4 mm2 within the maxLCBI4 mm was significantly higher in the LAD (34.1% vs. 25.9% vs. 13.7%, P < 0.001). CONCLUSION: Non-culprit lipid-rich segments in the LAD were more frequently associated with plaque-level events. LAD NIRS-IVUS screening may help identify patients requiring intensive surveillance and medical treatment
A Phos-Tag-Based Approach Reveals the Extent of Physiological Endoplasmic Reticulum Stress
Cellular response to endoplasmic reticulum (ER) stress or unfolded protein response (UPR) is a key defense mechanism associated with many human diseases. Despite its basic and clinical importance, the extent of ER stress inflicted by physiological and pathophysiological conditions remains difficult to quantitate, posing a huge obstacle that has hindered our further understanding of physiological UPR and its future therapeutic potential. Here we have optimized a Phos-tag-based system to detect the activation status of two proximal UPR sensors at the ER membrane. This method allowed for a quantitative assessment of the level of stress in the ER. Our data revealed quantitatively the extent of tissue-specific basal ER stress as well as ER stress caused by the accumulation of misfolded proteins and the fasting-refeeding cycle. Our study may pave the foundation for future studies on physiological UPR, aid in the diagnosis of ER-associated diseases and improve and facilitate therapeutic strategies targeting UPR in vivo
Single particle trajectories reveal active endoplasmic reticulum luminal flow
The endoplasmic reticulum (ER), a network of membranous sheets and pipes, supports functions encompassing biogenesis of secretory proteins and delivery of functional solutes throughout the cell[1, 2]. Molecular mobility through the ER network enables these functionalities, but diffusion alone is not sufficient to explain luminal transport across supramicrometre distances. Understanding the ER structure–function relationship is critical in light of mutations in ER morphology-regulating proteins that give rise to neurodegenerative disorders[3, 4]. Here, super-resolution microscopy and analysis of single particle trajectories of ER luminal proteins revealed that the topological organization of the ER correlates with distinct trafficking modes of its luminal content: with a dominant diffusive component in tubular junctions and a fast flow component in tubules. Particle trajectory orientations resolved over time revealed an alternating current of the ER contents, while fast ER super-resolution identified energy-dependent tubule contraction events at specific points as a plausible mechanism for generating active ER luminal flow. The discovery of active flow in the ER has implications for timely ER content distribution throughout the cell, particularly important for cells with extensive ER-containing projections such as neurons.Wellcome Trust - 3-3249/Z/16/Z and 089703/Z/09/Z [Kaminski]
UK Demential Research Institute [Avezov]
Wellcome Trust - 200848/Z/16/Z, WT: UNS18966 [Ron]
FRM Team Research Grant [Holcman]
Engineering and Physical Sciences Research Council (EPSRC) - EP/L015889/1 and EP/H018301/1 [Kaminski]
Medical Research Council (MRC) - MR/K015850/1 and MR/K02292X/1 [Kaminski
TFEB regulates lysosomal proteostasis
Loss-of-function diseases are often caused by destabilizing mutations that lead to protein misfolding and degradation. Modulating the innate protein homeostasis (proteostasis) capacity may lead to rescue of native folding of the mutated variants, thereby ameliorating the disease phenotype. In lysosomal storage disorders (LSDs), a number of highly prevalent alleles have missense mutations that do not impair the enzyme's catalytic activity but destabilize its native structure, resulting in the degradation of the misfolded protein. Enhancing the cellular folding capacity enables rescuing the native, biologically functional structure of these unstable mutated enzymes. However, proteostasis modulators specific for the lysosomal system are currently unknown. Here, we investigate the role of the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and function, in modulating lysosomal proteostasis in LSDs. We show that TFEB activation results in enhanced folding, trafficking and lysosomal activity of a severely destabilized glucocerebrosidase (GC) variant associated with the development of Gaucher disease (GD), the most common LSD. TFEB specifically induces the expression of GC and of key genes involved in folding and lysosomal trafficking, thereby enhancing both the pool of mutated enzyme and its processing through the secretory pathway. TFEB activation also rescues the activity of a β-hexosaminidase mutant associated with the development of another LSD, Tay–Sachs disease, thus suggesting general applicability of TFEB-mediated proteostasis modulation to rescue destabilizing mutations in LSDs. In summary, our findings identify TFEB as a specific regulator of lysosomal proteostasis and suggest that TFEB may be used as a therapeutic target to rescue enzyme homeostasis in LSDs
Ubiquitin Fold Modifier 1 (UFM1) and Its Target UFBP1 Protect Pancreatic Beta Cells from ER Stress-Induced Apoptosis
UFM1 is a member of the ubiquitin like protein family. While the enzymatic cascade of UFM1 conjugation has been elucidated in recent years, the biological function remains largely unknown. In this report we demonstrate that the recently identified C20orf116 [1], which we name UFM1-binding protein 1 containing a PCI domain (UFBP1), andCDK5RAP3 interact with UFM1. Components of the UFM1 conjugation pathway (UFM1, UFBP1, UFL1 and CDK5RAP3) are highly expressed in pancreatic islets of Langerhans and some other secretory tissues. Co-localization of UFM1 with UFBP1 in the endoplasmic reticulum (ER)depends on UFBP1. We demonstrate that ER stress, which is common in secretory cells, induces expression of Ufm1, Ufbp1 and Ufl1 in the beta-cell line INS-1E.siRNA-mediated Ufm1 or Ufbp1knockdown enhances apoptosis upon ER stress.Silencing the E3 enzyme UFL1, results in similar outcomes, suggesting that UFM1-UFBP1 conjugation is required to prevent ER stress-induced apoptosis. Together, our data suggest that UFM1-UFBP1participate in preventing ER stress-induced apoptosis in protein secretory cells
Co-chaperones are limiting in a depleted chaperone network
To probe the limiting nodes in the chaperoning network which maintains cellular proteostasis, we expressed a dominant negative mutant of heat shock factor 1 (dnHSF1), the regulator of the cytoplasmic proteotoxic stress response. Microarray analysis of non-stressed dnHSF1 cells showed a two- or more fold decrease in the transcript level of 10 genes, amongst which are the (co-)chaperone genes HSP90AA1, HSPA6, DNAJB1 and HSPB1. Glucocorticoid signaling, which requires the Hsp70 and the Hsp90 folding machines, was severely impaired by dnHSF1, but fully rescued by expression of DNAJA1 or DNAJB1, and partially by ST13. Expression of DNAJB6, DNAJB8, HSPA1A, HSPB1, HSPB8, or STIP1 had no effect while HSP90AA1 even inhibited. PTGES3 (p23) inhibited only in control cells. Our results suggest that the DNAJ co-chaperones in particular become limiting in a depleted chaperoning network. Our results also suggest a difference between the transcriptomes of cells lacking HSF1 and cells expressing dnHSF1
- …