730 research outputs found
Gill net catch composition and catch per unit effort in Flag Boshielo Dam, Limpopo Province, South Africa
Gill net surveys were conducted in 2013 to determine species composition and fisheries potential of Flag Boshielo Dam. Species contributing the most towards total biomass were Labeo rosae (40%), Oreochromis mossambicus (15%), Schilbe intermedius (10%) and Labeobarbus marequensis (9.8%). Catch per unit effort for gill nets set at night (4.4 ± 0.6 kg·100 m-net−1·hr−1) was significantly higher (P < 0.05) than for those set during the day (0.9 ± 0.1 kg·100 m-net−1·hr−1). Total fish biomass captured in 30, 50, 70, 90 and 110 mm mesh sized nets was 3.1, 31.5, 43.5, 23.5 and 16.1 kg, respectively. Catch in gillnets with mesh sizes ≥ 70 mm was dominated by L. rosae comprising 60% of the catch in the 70 mm mesh; L. rosae (40%) and O. mossambicus (36%) in the 90 mm mesh; and O. mossambicus (40%) and Clarias gariepinus (40%) in the 110 mm mesh. If a small-scale fishery were to be initiated, it is recommended that mesh sizes should exceed 70 mm and that further research on the biology and ecology of the main target species and of the current utilisation of the fishery be conducted to guide sustainable utilisation.Keywords: Arabie Dam, CPUE, fish composition, net selectivity, inland fisherie
Ab-initio study of BaTiO3 surfaces
We have carried out first-principles total-energy calculations of (001)
surfaces of the tetragonal and cubic phases of BaTiO3. Both BaO-terminated
(type I) and TiO2-terminated (type II) surfaces are considered, and the atomic
configurations have been fully relaxed. We found no deep-gap surface states for
any of the surfaces, in agreement with previous theoretical studies. However,
the gap is reduced for the type-II surface, especially in the cubic phase. The
surface relaxation energies are found to be substantial, i.e., many times
larger than the bulk ferroelectric well depth. Nevertheless, the influence of
the surface upon the ferroelectric order parameter is modest; we find only a
small enhancement of the ferroelectricity near the surface.Comment: 8 pages, two-column style with 4 postscript figures embedded. Uses
REVTEX and epsf macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/index.html#pad_sur
IL-21 promotes the expansion of CD27+CD28+ tumor infiltrating lymphocytes with high cytotoxic potential and low collateral expansion of regulatory T cells
Contains fulltext :
118572.pdf (publisher's version ) (Open Access)BACKGROUND: Adoptive cell transfer of tumor infiltrating lymphocytes has shown clinical efficacy in the treatment of melanoma and is now also being explored in other tumor types. Generation of sufficient numbers of effector T cells requires extensive ex vivo expansion, often at the cost of T cell differentiation and potency. For the past 20 years, IL-2 has been the key cytokine applied in the expansion of TIL for ACT. However, the use of IL-2 has also led to collateral expansion of regulatory T cells (Tregs) and progressive T cell differentiation, factors known to limit in vivo persistence and activity of transferred TIL. The use of alternative T cell growth factors is therefore warranted. Here, we have compared the effects of IL-2, -15 and -21 cytokines on the expansion and activation of TIL from single-cell suspensions of non-small cell lung cancer, ovarian cancer and melanoma. METHODS: We applied the K562-based artificial APC (aAPC) platform for the direct and rapid expansion of tumor infiltrating lymphocytes isolated from primary cancer specimens. These aAPC were engineered to express the Fc-gamma receptor CD32 (for anti-CD3 antibody binding), the co-stimulatory molecule 4-1BBL, and to secrete either IL-2, IL-15 or IL-21 cytokine. RESULTS: Although IL-2 aAPC induced the greatest overall TIL expansion, IL-21 aAPC induced superior expansion of CD8+ T cells with a CD27+CD28+ "young" phenotype and superior functional cytotoxic effector characteristics, without collateral expansion of Tregs. CONCLUSION: Our data rationalize the clinical application of IL-21-secreting aAPC as a standardized cell-based platform in the expansion of "young" effector TIL for ACT
An oncogenic role for sphingosine kinase 2
While both human sphingosine kinases (SK1 and SK2) catalyze the generation of the pleiotropic signaling lipid sphingosine 1-phosphate, these enzymes appear to be functionally distinct. SK1 has well described roles in promoting cell survival, proliferation and neoplastic transformation. The roles of SK2, and its contribution to cancer, however, are much less clear. Some studies have suggested an antiproliferative/ pro-apoptotic function for SK2, while others indicate it has a prosurvival role and its inhibition can have anti-cancer effects. Our analysis of gene expression data revealed that SK2 is upregulated in many human cancers, but only to a small extent (up to 2.5-fold over normal tissue). Based on these findings, we examined the effect of different levels of cellular SK2 and showed that high-level overexpression reduced cell proliferation and survival, and increased cellular ceramide levels. In contrast, however, low-level SK2 overexpression promoted cell survival and proliferation, and induced neoplastic transformation in vivo. These findings coincided with decreased nuclear localization and increased plasma membrane localization of SK2, as well as increases in extracellular S1P formation. Hence, we have shown for the first time that SK2 can have a direct role in promoting oncogenesis, supporting the use of SK2-specific inhibitors as anti-cancer agents.Heidi A. Neubauer, Duyen H. Pham, Julia R. Zebol, Paul A.B. Moretti, Amanda L. Peterson, Tamara M. Leclercq, Huasheng Chan, Jason A. Powell, Melissa R. Pitman, Michael S. Samuel, Claudine S. Bonder, Darren J. Creek, Briony L. Gliddon and Stuart M. Pitso
The Dependence of the Superconducting Transition Temperature of Organic Molecular Crystals on Intrinsically Non-Magnetic Disorder: a Signature of either Unconventional Superconductivity or Novel Local Magnetic Moment Formation
We give a theoretical analysis of published experimental studies of the
effects of impurities and disorder on the superconducting transition
temperature, T_c, of the organic molecular crystals kappa-ET_2X and beta-ET_2X
(where ET is bis(ethylenedithio)tetrathiafulvalene and X is an anion eg I_3).
The Abrikosov-Gorkov (AG) formula describes the suppression of T_c both by
magnetic impurities in singlet superconductors, including s-wave
superconductors and by non-magnetic impurities in a non-s-wave superconductor.
We show that various sources of disorder lead to the suppression of T_c as
described by the AG formula. This is confirmed by the excellent fit to the
data, the fact that these materials are in the clean limit and the excellent
agreement between the value of the interlayer hopping integral, t_perp,
calculated from this fit and the value of t_perp found from angular-dependant
magnetoresistance and quantum oscillation experiments. If the disorder is, as
seems most likely, non-magnetic then the pairing state cannot be s-wave. We
show that the cooling rate dependence of the magnetisation is inconsistent with
paramagnetic impurities. Triplet pairing is ruled out by several experiments.
If the disorder is non-magnetic then this implies that l>=2, in which case
Occam's razor suggests that d-wave pairing is realised. Given the proximity of
these materials to an antiferromagnetic Mott transition, it is possible that
the disorder leads to the formation of local magnetic moments via some novel
mechanism. Thus we conclude that either kappa-ET_2X and beta-ET_2X are d-wave
superconductors or else they display a novel mechanism for the formation of
localised moments. We suggest systematic experiments to differentiate between
these scenarios.Comment: 18 pages, 5 figure
Galectin-3 deficiency in pregnancy increases the risk of fetal growth restriction (FGR) via placental insufficiency.
Fetal growth restriction (FGR) is the most common pregnancy complication in developed countries. Pregnancies affected by FGR, frequently concur with complications and high risk of neonatal morbidity and mortality. To date, no approved treatment is available for pregnant women affected with FGR. The objective of this study was to investigate the contribution of galectin-3 (gal-3), a β-galactoside binding protein involved in pregnancy, placental function and fetal growth. We demonstrated that lack of gal-3 during mouse pregnancy leads to placental dysfunction and drives FGR in the absence of a maternal preeclampsia syndrome. Analysis of gal-3 deficient dams revealed placental inflammation and malperfusion, as well as uterine natural killer cell infiltration with aberrant activation. Our results also show that FGR is associated with a failure to increase maternal circulating gal-3 levels during the second and third trimester in human pregnancies. Placentas from human pregnancies affected by FGR displayed lower gal-3 expression, which correlated with placental dysfunction. These data highlight the importance of gal-3 in the promotion of proper placental function, as its absence leads to placental disease and subsequent FGR
Field Measurements of Terrestrial and Martian Dust Devils
Surface-based measurements of terrestrial and martian dust devils/convective vortices provided from mobile and stationary platforms are discussed. Imaging of terrestrial dust devils has quantified their rotational and vertical wind speeds, translation speeds, dimensions, dust load, and frequency of occurrence. Imaging of martian dust devils has provided translation speeds and constraints on dimensions, but only limited constraints on vertical motion within a vortex. The longer mission durations on Mars afforded by long operating robotic landers and rovers have provided statistical quantification of vortex occurrence (time-of-sol, and recently seasonal) that has until recently not been a primary outcome of more temporally limited terrestrial dust devil measurement campaigns. Terrestrial measurement campaigns have included a more extensive range of measured vortex parameters (pressure, wind, morphology, etc.) than have martian opportunities, with electric field and direct measure of dust abundance not yet obtained on Mars. No martian robotic mission has yet provided contemporaneous high frequency wind and pressure measurements. Comparison of measured terrestrial and martian dust devil characteristics suggests that martian dust devils are larger and possess faster maximum rotational wind speeds, that the absolute magnitude of the pressure deficit within a terrestrial dust devil is an order of magnitude greater than a martian dust devil, and that the time-of-day variation in vortex frequency is similar. Recent terrestrial investigations have demonstrated the presence of diagnostic dust devil signals within seismic and infrasound measurements; an upcoming Mars robotic mission will obtain similar measurement types
Experimental study of high energy electron interactions in a superconducting aluminum alloy resonant bar
Peak amplitude measurements of the fundamental mode of oscillation of a
suspended aluminum alloy bar hit by an electron beam show that the amplitude is
enhanced by a factor ~3.5 when the material is in the superconducting state.
This result is consistent with the cosmic ray observations made by the resonant
gravitational wave detector NAUTILUS, made of the same alloy, when operated in
the superconducting state. A comparison of the experimental data with the
predictions of the model describing the underlying physical process is also
presented
Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV
We report a measurement of the longitudinal double-spin asymmetry A_LL and
the differential cross section for inclusive Pi0 production at midrapidity in
polarized proton collisions at sqrt(s) = 200 GeV. The cross section was
measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be
in good agreement with a next-to-leading order perturbative QCD calculation.
The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T <
11 GeV/c and excludes a maximal positive gluon polarization in the proton. The
mean transverse momentum fraction of Pi0's in their parent jets was found to be
around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC
Cytoplasmic dynein regulates the subcellular localization of sphingosine kinase 2 to elicit tumor-suppressive functions in glioblastoma
While the two mammalian sphingosine kinases, SK1 and SK2, both catalyze the generation of pro-survival sphingosine 1-phosphate (S1P), their roles vary dependent on their different subcellular localization. SK1 is generally found in the cytoplasm or at the plasma membrane where it can promote cell proliferation and survival. SK2 can be present at the plasma membrane where it appears to have a similar function to SK1, but can also be localized to the nucleus, endoplasmic reticulum or mitochondria where it mediates cell death. Although SK2 has been implicated in cancer initiation and progression, the mechanisms regulating SK2 subcellular localization are undefined. Here, we report that SK2 interacts with the intermediate chain subunits of the retrograde-directed transport motor complex, cytoplasmic dynein 1 (DYNC1I1 and -2), and we show that this interaction, particularly with DYNC1I1, facilitates the transport of SK2 away from the plasma membrane. DYNC1I1 is dramatically downregulated in patient samples of glioblastoma (GBM), where lower expression of DYNC1I1 correlates with poorer patient survival. Notably, low DYNC1I1 expression in GBM cells coincided with more SK2 localized to the plasma membrane, where it has been recently implicated in oncogenesis. Re-expression of DYNC1I1 reduced plasma membrane-localized SK2 and extracellular S1P formation, and decreased GBM tumor growth and tumor-associated angiogenesis in vivo. Consistent with this, chemical inhibition of SK2 reduced the viability of patient-derived GBM cells in vitro and decreased GBM tumor growth in vivo. Thus, these findings demonstrate a tumor-suppressive function of DYNC1I1, and uncover new mechanistic insights into SK2 regulation which may have implications in targeting this enzyme as a therapeutic strategy in GBM.Heidi A. Neubauer, Melinda N. Tea, Julia R. Zebol, Briony L. Gliddon, Cassandra Stefanidis, Paul A.B. Moretti, Melissa R. Pitman, Maurizio Costabile, Jasreen Kular, Brett W. Stringer, Bryan W. Day, Michael S. Samuel, Claudine S. Bonder, Jason A. Powell, Stuart M. Pitso
- …