25,852 research outputs found

    Multi-calculation rate simulations

    Get PDF
    It is common in real time simulations of large aerospace systems to separate the high and low frequency subsystems within the simulation and perform the integrations of the subsystems at different calculation rates. This is done to strike a balance between accuracy of calculation and capacity of the digital computer. Questions arising as to the accuracy of this structure compared to single calculation rates were studied using a linear aircraft model. Also investigated were interactions arising to cause errors worse than those expected. Problems are specifically identified and guidelines are given for selection of sample rates for multiple rate simulations

    Aircraft digital control design methods

    Get PDF
    Variations in design methods for aircraft digital flight control are evaluated and compared. The methods fall into two categories; those where the design is done in the continuous domain (or s plane) and those where the design is done in the discrete domain (or z plane). Design method fidelity is evaluated by examining closed loop root movement and the frequency response of the discretely controlled continuous aircraft. It was found that all methods provided acceptable performance for sample rates greater than 10 cps except the uncompensated s plane design method which was acceptable above 20 cps. A design procedure based on optimal control methods was proposed that provided the best fidelity at very slow sample rates and required no design iterations for changing sample rates

    Level crossing in the three-body problem for strongly interacting fermions in a harmonic trap

    Full text link
    We present a solution of the three-fermion problem in a harmonic potential across a Feshbach resonance. We compare the spectrum with that of the two-body problem and show that it is energetically unfavorable for the three fermions to occupy one lattice site rather than two. We also demonstrate the existence of an energy level crossing in the ground state with a symmetry change of its wave function, suggesting the possibility of a phase transition for the corresponding many-body case.Comment: 5 pages, 6 figures, typos corrected, references adde

    A phenomenological model of the superconducting state of the Bechgaard salts

    Full text link
    We present a group theoretical analysis of the superconducting state of the Bechgaard salts, e.g., (TMTSF)_2PF_6 or (TMTSF)_2ClO_6. We show that there are eight symmetry distinct superconducting states. Of these only the (fully gapped, even frequency, p-wave, triplet) 'polar state' is consistent with the full range of the experiments on the Bechgaard salts. The gap of the polar state is d(k) (psi_uk,0,0), where psi_uk may be any odd parity function that is translationally invariant.Comment: 4 pages, no figure

    Implementing Quantum Gates by Optimal Control with Doubly Exponential Convergence

    Full text link
    We introduce a novel algorithm for the task of coherently controlling a quantum mechanical system to implement any chosen unitary dynamics. It performs faster than existing state of the art methods by one to three orders of magnitude (depending on which one we compare to), particularly for quantum information processing purposes. This substantially enhances the ability to both study the control capabilities of physical systems within their coherence times, and constrain solutions for control tasks to lie within experimentally feasible regions. Natural extensions of the algorithm are also discussed.Comment: 4+2 figures; to appear in PR

    EXFI: a low cost Fault Injection System for embedded Microprocessor-based Boards

    Get PDF
    Evaluating the faulty behavior of low-cost embedded microprocessor-based boards is an increasingly important issue, due to their adoption in many safety critical systems. The architecture of a complete Fault Injection environment is proposed, integrating a module for generating a collapsed list of faults, and another for performing their injection and gathering the results. To address this issue, the paper describes a software-implemented Fault Injection approach based on the Trace Exception Mode available in most microprocessors. The authors describe EXFI, a prototypical system implementing the approach, and provide data about some sample benchmark applications. The main advantages of EXFI are the low cost, the good portability, and the high efficienc

    Electrons on a sphere in disorder potential

    Full text link
    We investigate, both analytically and numerically, the behavior of the electron gas on a sphere in the presence of point-like impurities. We find a criterion when the disorder can be regarded as small one and the main effect is the broadening of rotational multiplets. In the latter regime the statistics of one impurity-induced band is studied numerically. The energy level spacing distribution function follows the law P(s) ~ s exp(-a s^b) with 1<b<2. The number variance shows various possibilities, strongly dependent on the chosen model of disorder.Comment: 11 pages, REVTEX, 9 eps figures; references added to Sec.

    Calcium Oxalate Crystal Production in Two Members of the Mucorales

    Get PDF
    Calcium oxalate crystals are found in association with the sporangia of Mucor hiemalis and Rhizopus oryzae. Crystals observed in each species vary in morphology from simple crystals consisting of single spines in M. hiemalis to complex crystals with twin spines, sometimes three-parted, on a common base in R. oryzae. The early development of the crystals is similar in both species with a layer of the cell wall covering in the initial crystals. The spines of M. hiemalis rapidly emerge while the crystals of R. oryzae appear to remain covered with a layer of outer wall material. The crystals of both species become fully developed just prior to spore release. Details of crystal development are compared and possible mechanisms for crystal development are explored

    Variational approach for walking solitons in birefringent fibres

    Get PDF
    We use the variational method to obtain approximate analytical expressions for the stationary pulselike solutions in birefringent fibers when differences in both phase velocities and group velocities between the two components and rapidly oscillating terms are taken into account. After checking the validity of the approximation we study how the soliton pulse shape depends on its velocity and nonlinear propagation constant. By numerically solving the propagation equation we have found that most of these stationary solutions are stable.Comment: LaTeX2e, uses graphicx package, 23 pages with 8 figure

    Gravitational wave asteroseismology with fast rotating neutron stars

    Full text link
    We investigate damping and growth times of the f-mode for rapidly rotating stars and a variety of different polytropic equations of state in the Cowling approximation. We discuss the differences in the eigenfunctions of co- and counterrotating modes and compute the damping times of the f-mode for several EoS and all rotation rates up to the Kepler-limit. This is the first study of the damping/growth time of this type of oscillations for fast rotating neutron stars in a general relativistic framework. We use these frequencies and damping/growth times to create robust empirical formulae which can be used for gravitational wave asteroseismology. The estimation of the damping/growth time is based on the quadrupole formula and our results agree very well with Newtonian ones in the appropriate limit.Comment: 15 pages, 8 figures, version accepted for publication in PhysRev
    • …
    corecore