15,987 research outputs found
A phenomenological model of the superconducting state of the Bechgaard salts
We present a group theoretical analysis of the superconducting state of the
Bechgaard salts, e.g., (TMTSF)_2PF_6 or (TMTSF)_2ClO_6. We show that there are
eight symmetry distinct superconducting states. Of these only the (fully
gapped, even frequency, p-wave, triplet) 'polar state' is consistent with the
full range of the experiments on the Bechgaard salts. The gap of the polar
state is d(k) (psi_uk,0,0), where psi_uk may be any odd parity function that is
translationally invariant.Comment: 4 pages, no figure
Assessing movements of three buoy line types using DSTmilli Loggers: Implications for entanglements of bottlenose dolphins in the crab pot fishery
A study was conducted in October 2006 in the Charleston, South Carolina area to test the movements of three different buoy line types to determine which produced a preferred profile that could reduce the risk of dolphin entanglement. Tests on diamond-braided nylon commonly used in the crab pot fishery were compared with stiffened line of Esterpro and calf types in both shallow and deep water environments using DSTmilli data loggers. Loggers were placed at intervals along the lines to record depth, and thus movements, over a 24 hour period. Three observers viewed video animations and charts created for each of the six trial days from the collected logger data and provided their opinions on the most desirable line type that fit set criteria. A quantitative analysis (ANCOVA) of the data was conducted taking into consideration daily tidal fluctuations and logger movements. Loggers tracking the tides had an r2 value approaching 1.00 and produced little movement other than with the tides. Conversely, r2 values approaching 0.00 were less affected by tidal movement and influenced by currents that cause more erratic movement. Results from this study showed that stiffened line, in particular the medium lay Esterpro type, produced the more desirable profiles that could reduce risk of dolphin entanglement. Combining the observerās results with the ANCOVA results, Esterpro was chosen nearly 60% of the time as opposed to the nylon line which was only chosen 10% of the time. ANCOVA results showed that the stiffened lines performed better in both the shallow and deep water environments, while the nylon line only performed better during one trial in a deep water set, most probably due to the increased current velocities experienced that day. (58pp.)(PDF contains 68 pages
Relation between the eigenfrequencies of Bogoliubov excitations of Bose-Einstein condensates and the eigenvalues of the Jacobian in a time-dependent variational approach
We study the relation between the eigenfrequencies of the Bogoliubov
excitations of Bose-Einstein condensates, and the eigenvalues of the Jacobian
stability matrix in a variational approach which maps the Gross-Pitaevskii
equation to a system of equations of motion for the variational parameters. We
do this for Bose-Einstein condensates with attractive contact interaction in an
external trap, and for a simple model of a self-trapped Bose-Einstein
condensate with attractive 1/r interaction. The stationary solutions of the
Gross-Pitaevskii equation and Bogoliubov excitations are calculated using a
finite-difference scheme. The Bogoliubov spectra of the ground and excited
state of the self-trapped monopolar condensate exhibits a Rydberg-like
structure, which can be explained by means of a quantum defect theory. On the
variational side, we treat the problem using an ansatz of time-dependent
coupled Gaussians combined with spherical harmonics. We first apply this ansatz
to a condensate in an external trap without long-range interaction, and
calculate the excitation spectrum with the help of the time-dependent
variational principle. Comparing with the full-numerical results, we find a
good agreement for the eigenfrequencies of the lowest excitation modes with
arbitrary angular momenta. The variational method is then applied to calculate
the excitations of the self-trapped monopolar condensates, and the
eigenfrequencies of the excitation modes are compared.Comment: 15 pages, 12 figure
Advanced turboprop testbed systems study. Volume 1: Testbed program objectives and priorities, drive system and aircraft design studies, evaluation and recommendations and wind tunnel test plans
The establishment of propfan technology readiness was determined and candidate drive systems for propfan application were identified. Candidate testbed aircraft were investigated for testbed aircraft suitability and four aircraft selected as possible propfan testbed vehicles. An evaluation of the four candidates was performed and the Boeing KC-135A and the Gulfstream American Gulfstream II recommended as the most suitable aircraft for test application. Conceptual designs of the two recommended aircraft were performed and cost and schedule data for the entire testbed program were generated. The program total cost was estimated and a wind tunnel program cost and schedule is generated in support of the testbed program
Imaging memory in temporal lobe epilepsy: predicting the effects of temporal lobe resection
Functional magnetic resonance imaging can demonstrate the functional anatomy of cognitive processes. In patients with refractory temporal lobe epilepsy, evaluation of preoperative verbal and visual memory function is important as anterior temporal lobe resections may result in material specific memory impairment, typically verbal memory decline following left and visual memory decline after right anterior temporal lobe resection. This study aimed to investigate reorganization of memory functions in temporal lobe epilepsy and to determine whether preoperative memory functional magnetic resonance imaging may predict memory changes following anterior temporal lobe resection. We studied 72 patients with unilateral medial temporal lobe epilepsy (41 left) and 20 healthy controls. A functional magnetic resonance imaging memory encoding paradigm for pictures, words and faces was used testing verbal and visual memory in a single scanning session on a 3T magnetic resonance imaging scanner. Fifty-four patients subsequently underwent left (29) or right (25) anterior temporal lobe resection. Verbal and design learning were assessed before and 4 months after surgery. Event-related functional magnetic resonance imaging analysis revealed that in left temporal lobe epilepsy, greater left hippocampal activation for word encoding correlated with better verbal memory. In right temporal lobe epilepsy, greater right hippocampal activation for face encoding correlated with better visual memory. In left temporal lobe epilepsy, greater left than right anterior hippocampal activation on word encoding correlated with greater verbal memory decline after left anterior temporal lobe resection, while greater left than right posterior hippocampal activation correlated with better postoperative verbal memory outcome. In right temporal lobe epilepsy, greater right than left anterior hippocampal functional magnetic resonance imaging activation on face encoding predicted greater visual memory decline after right anterior temporal lobe resection, while greater right than left posterior hippocampal activation correlated with better visual memory outcome. Stepwise linear regression identified asymmetry of activation for encoding words and faces in the ipsilateral anterior medial temporal lobe as strongest predictors for postoperative verbal and visual memory decline. Activation asymmetry, language lateralization and performance on preoperative neuropsychological tests predicted clinically significant verbal memory decline in all patients who underwent left anterior temporal lobe resection, but were less able to predict visual memory decline after right anterior temporal lobe resection. Preoperative memory functional magnetic resonance imaging was the strongest predictor of verbal and visual memory decline following anterior temporal lobe resection. Preoperatively, verbal and visual memory function utilized the damaged, ipsilateral hippocampus and also the contralateral hippocampus. Memory function in the ipsilateral posterior hippocampus may contribute to better preservation of memory after surgery
Competition between disorder and exchange splitting in superconducting ZrZn_2
We propose a simple picture for the occurrence of superconductivity and the
pressure dependence of the superconducting critical temperature, T_{SC}, in
ZrZn_2. According to our hypothesis the pairing potential is independent of
pressure, but the exchange splitting, E_{xc}, leads to a pressure dependence in
the (spin dependent) density of states at the Fermi level,
D_\sigma(\epsilon_F). Assuming p-wave pairing T_{SC} is dependent on
D_\sigma(\epsilon_F) which ensures that, in the absence of non-magnetic
impurities, T_{SC} decreases as pressure is applied until it reaches a minimum
in the paramagnetic state. Disorder reduces this minimum to zero, this gives
the illusion that the superconductivity disappears at the same pressure as
ferromagnetism does.Comment: 7 pages, 4 figures, submitted to J. Phys. Cond. Ma
Magnetic excitations of the Cu quantum spin chain in SrCuPtO
We report the magnetic excitation spectrum as measured by inelastic neutron
scattering for a polycrystalline sample of SrCuPtO. Modeling the data
by the 2+4 spinon contributions to the dynamical susceptibility within the
chains, and with interchain coupling treated in the random phase approximation,
accounts for the major features of the powder-averaged structure factor. The
magnetic excitations broaden considerably as temperature is raised, persisting
up to above 100 K and displaying a broad transition as previously seen in the
susceptibility data. No spin gap is observed in the dispersive spin excitations
at low momentum transfer, which is consistent with the gapless spinon continuum
expected from the coordinate Bethe ansatz. However, the temperature dependence
of the excitation spectrum gives evidence of some very weak interchain
coupling.Comment: 9 pages, 5 figure
Study of several factors affecting crew escape trajectories from the Space Shuttle Orbiter at low-subsonic speeds
Factors affecting the bailout characteristics from the space shuttle orbiter at low-subsonic speeds were investigated. In the 12-foot low-speed tunnel and the 4 by 7-meter tunnel with 0.03-scale models. The effect of crew-model exit velocity, body position, and body weight were studied with egress from the main side hatch with the orbiter upright and from the upper cabin hatch with the orbiter inverted. Crew model drag and flow field measurements around the orbiter were estimated. The high-angle-of-attack trim characteristics of the orbiter was determined by force tests in an attempt to improve bailout conditions. A computer simulation was made to evaluate the maneuver necessary to attain the high-angle-of-attack trim
Late Miocene to early Pliocene biofacies of Wanganui and Taranaki Basins, New Zealand: Applications to paleoenvironmental and sequence stratigraphic analysis
The Matemateaonga Formation is late Miocene to early Pliocene (upper Tongaporutuan to lower Opoitian New Zealand Stages) in age. The formation comprises chiefly shellbeds, siliciclastic sandstone, and siltstone units and to a lesser extent non-marine and shallow marine conglomerate and rare paralic facies. The Matemateaonga Formation accumulated chiefly in shelf paleoenvironments during basement onlap and progradation of a late Miocene to early Pliocene continental margin wedge in the Wanganui and Taranaki Basins. The formation is strongly cyclothemic, being characterised by recurrent vertically stacked facies successions, bounded by sequence boundaries. These facies accumulated in a range of shoreface to mid-outer shelf paleoenvironments during conditions of successively oscillating sea level. This sequential repetition of facies and the biofacies they enclose are the result of sixth-order glacio-eustatic cyclicity. Macrofaunal associations have been identified from statistical analysis of macrofossil occurrences collected from multiple sequences. Each association is restricted to particular lithofacies and stratal positions and shows a consistent order and/or position within the sequences. This pattern of temporal paleoecologic change appears to be the result of lateral, facies-related shifting of broad biofacies belts, or habitat-tracking, in response to fluctuations of relative sea level, sediment flux, and other associated paleoenvironmental variables. The associations also show strong similarity in terms of their generic composition to biofacies identified in younger sedimentary strata and the modern marine benthic environment in New Zealand
Comparison of the phase diagram of the half-filled layered organic superconductors with the phase diagram of the RVB theory of the Hubbard-Heisenberg model
We present an resonating valence bond (RVB) theory of superconductivity for
the Hubbard--Heisenberg model on an anisotropic triangular lattice. We show
that these calculations are consistent with the observed phase diagram of the
half-filled layered organic superconductors, such as the beta, beta', kappa and
lambda phases of (BEDT-TTF)_2X [bis(ethylenedithio)tetrathiafulvalene] and
(BETS)_2X [bis(ethylenedithio)tetraselenafulvalene]. We find a first order
transition from a Mott insulator to a d_{x^2-y^2} superconductor with a small
superfluid stiffness and a pseudogap with d_{x^2-y^2} symmetry. The
Mott--Hubbard transition can be driven either by increasing the on-site Coulomb
repulsion, U, or by changing the anisotropy of the two hopping integrals, t'/t.
Our results suggest that the ratio t'/t plays an important role in determining
the phase diagram of the organic superconductors.Comment: 4 pages, 3 figur
- ā¦