15 research outputs found

    Novel geometric coordination registration in cone-beam computed tomogram

    Get PDF
    Paper ID: AIPR-140701-9The use of cone-beam computed tomography (CBCT) in medical field can help the clinicians to visualize the hard tissues in head and neck region via a cylindrical field of view (FOV). The images are usually presented with reconstructed three-dimensional (3D) imaging and its orthogonal (x-, y-and z-planes) images. Spatial relationship of the structures in these orthogonal views is important for diagnosis of diseases as well as planning for treatment. However, the non-standardized positioning of the object during the CBCT data acquisition often induces errors in measurement since orthogonal images cut at different planes might look similar. In order to solve the problem, this paper proposes an effective mapping from the Cartesian coordinates of a cube physically to its respective coordinates in 3D imaging. Therefore, the object (real physical domain) and the imaging (computerized virtual domain) can be linked up and registered. In this way, the geometric coordination of the object/imaging can be defined and its orthogonal images would be fixed on defined planes. The images can then be measured with vector information and serial imagings can also be directly compared. © 2014 IEEE.published_or_final_versio

    Validation of a novel geometric coordination registration using manual and semi-automatic registration in cone-beam computed tomogram

    Get PDF
    Session - Image Processing: Machine Vision Applications 9Cartesian coordinates define on a physical cubic corner (CC) with the corner tip as the origin and three corresponding line angles as (x, y, z)-axes. In its image (virtual) domains such as these obtained by cone-beam computed tomography (CBCT) and optical surface scanning, a single coordinate can then be registered based on the CC. The advantage of using a CC in registration is simple and accurate physical coordinate measurement. The accuracy of image-to-physical (IP) and imageto-image (II) transformations, measured by target registration error (TRE), can then be validated by comparing coordinates of target points in the virtual domains to that of the physical control. For the CBCT, the registration may be performed manually using a surgical planning software SimPlant Pro (manual registration (MR)) or semi-automatically using MeshLab and 3D Slicer (semiautomatic registration (SR)) matching the virtual display axes to the corresponding (x-y-z)-axes. This study aims to validate the use of CC as a surgical stereotactic marker by measuring TRE in MR and SR respectively. Mean TRE is 0.56 +/- 0.24 mm for MR and 0.39 +/- 0.21 mm for SR. The SR results in a more accurate registration than the MR and point-based registration with 20 fiducial points. TRE of the MR is less than 1.0 mm and still acceptable clinically.postprin

    Image calibration and registration in cone-beam computed tomogram for measuring the accuracy of computer-aided implant surgery

    Get PDF
    Medical radiography is the use of radiation to “see through” a human body without breaching its integrity (surface). With computed tomography (CT)/cone beam computed tomography (CBCT), three-dimensional (3D) imaging can be produced. These imagings not only facilitate disease diagnosis but also enable computer-aided surgical planning/navigation. In dentistry, the common method for transfer of the virtual surgical planning to the patient (reality) is the use of surgical stent either with a preloaded planning (static) like a channel or a real time surgical navigation (dynamic) after registration with fiducial markers (RF). This paper describes using the corner of a cube as a radiopaque fiducial marker on an acrylic (plastic) stent, this RF allows robust calibration and registration of Cartesian (x, y, z)- coordinates for linking up the patient (reality) and the imaging (virtuality) and hence the surgical planning can be transferred in either static or dynamic way. The accuracy of computer-aided implant surgery was measured with reference to coordinates. In our preliminary model surgery, a dental implant was planned virtually and placed with preloaded surgical guide. The deviation of the placed implant apex from the planning was x=+0.56mm [more right], y=- 0.05mm [deeper], z=-0.26mm [more lingual]) which was within clinically 2mm safety range. For comparison with the virtual planning, the physically placed implant was CT/CBCT scanned and errors may be introduced. The difference of the actual implant apex to the virtual apex was x=0.00mm, y=+0.21mm [shallower], z=-1.35mm [more lingual] and this should be brought in mind when interpret the results

    Comparison of ridge mapping and cone beam computed tomography for planning dental implant therapy.

    Full text link
    The aim of this study was to compare the relative accuracy of the ridge-mapping method against that of standard computed tomography (CT). Consecutive partially edentulous subjects requiring dental implants were recruited for this prospective study. Vacuum-formed radiographic templates with reference points were used for the ridge-mapping procedure and CT scanning. Ridge-mapping measurements were translated onto study models, which were subjected to CT scanning with the templates in place. CT images of the study models obtained from the ridge-mapping method were compared with CT images of the subjects. The data were analyzed with the Wilcoxon signed-rank test. Differences were considered significant if P < .05. Fourteen subjects were recruited and a total of 21 implant sites were evaluated. The ridge dimensions measured by the bone-mapping method and CT scanning were significantly different (P < .05). The mean difference ranged from 0.3 to 0.5 mm, and large variations were found in the sulcus region. Measurements of the alveolar bone dimension using the ridge-mapping method are different from CT scanning, with a mean difference of about 0.4 mm.link_to_subscribed_fulltex

    Müller Glial Cells in Retinal Disease

    Full text link
    corecore