3 research outputs found

    The application of optimal estimation to lidar

    No full text
    Lidars are ideally placed to investigate the effects of aerosol and cloud on the climate system due to their unprecedented vertical and temporal resolution. Dozens of techniques have been developed in recent decades to retrieve the extinction and backscatter of atmospheric particulates in a variety of conditions. These methods, though often very successful, are fairly ad hoc in their construction, utilising a wide variety of approximations and assumptions that makes comparing the resulting data products with independent measurements difficult and their implementation in climate modelling virtually impossible. As with its application to satellite retrievals at the turn of the century, the methods of non-linear regression can improve this situation by providing a mathematical framework in which the various approximations, estimates of experimental error, and any additional knowledge of the atmosphere can be clearly defined and included in a mathematically `optimal' retrieval method, providing rigorously derived error estimates. In addition to making it easier for scientists outside of the lidar field to understand and utilise lidar data, it also simplifies the process of moving beyond extinction and backscatter coefficients and retrieving microphysical properties of aerosols and cloud particles. A technique to estimate the lidar's overlap function using an analytic model of the optical system and a simple extinction profile has been developed. This is used to calibrate the system such that the profile of extinction and backscatter coefficients can be retrieved using the elastic and nitrogen Raman backscatter signals. These methods have been used to extract value from compromised data collected with a prototype Raman lidar system. Selected events will be presented, with the hope that others may be inspired to apply the techniques to a more robust system

    Parallel retrieval of aerosol and cloud

    No full text
    Due to similarities in their radiometric signature, it is not possible to retrieve aerosol and cloud properties simultaneously from satellite imagery. A plethora of filtering techniques have been developed to ensure aerosol and cloud are analysed separately, but this neglects the scientifically interesting regions of interaction between the two. It also limits the spatial coverage of such products, with up to 20% of the planet neglected because it is considered too cloudy to be suitable for an aerosol retrieval but insufficiently so for a cloud retrieval. The Optimal Retrieval of Aerosol and Cloud (ORAC) is a single algorithm that can retrieve the aerosol or cloud properties consistent with a single measurement. By performing radiative transfer calculations via look-up tables, various types of particle can be considered in parallel — such as liquid-phase cloud, different models of ice nuclei, and various clean and polluted aerosols — by simply running the program repeatedly using tables assuming different microphysical properties and vertical distributions. Bayesian statistics can determine the probability that the scene contains a specific species, classifying it as aerosol, cloud, or uncertain. The important but infrequently discussed `uncertain' region can then be used to investigate the impact of contamination and data coverage on existing products by, for example, observing how retrieved aerosol optical thickness varies as a function of the distance from the nearest cloud. It also provides a potential window for the study of aerosol-cloud interactions
    corecore