147 research outputs found

    Nonlinear photoionization of transparent solids: a nonperturbative theory obeying selection rules

    Full text link
    We provide a nonperturbative theory for photoionization of transparent solids. By applying a particular steepest-descent method, we derive analytical expressions for the photoionization rate within the two-band structure model, which consistently account for the selectionselection rulesrules related to the parity of the number of absorbed photons (oddodd or eveneven). We demonstrate the crucial role of the interference of the transition amplitudes (saddle-points), which in the semi-classical limit, can be interpreted in terms of interfering quantum trajectories. Keldysh's foundational work of laser physics [Sov. Phys. JETP 20, 1307 (1965)] disregarded this interference, resulting in the violation of selectionselection rulesrules. We provide an improved Keldysh photoionization theory and show its excellent agreement with measurements for the frequency dependence of the two-photon absorption and nonlinear refractive index coefficients in dielectrics

    Developing the drilling tool for trenchless pipeline construction

    Get PDF
    The most promising methods of underground pipeline construction are discussed. To increase the efficiency of the drilling tool for underground pipeline construction the following research methods have been used in the article: optimization method of Evolutionary strategy, finite element modeling. The influence of geometric parameters of the drilling tool on force characteristics of enlarging the drill hole has been investigated

    Dynamic Material Parameters in Molecular Dynamics and Hydrodynamic Simulations on Ultrashort-Pulse Laser Ablation of Aluminum

    Get PDF
    Recent developments on the open-source Molecular Dynamics Code IMD from the Institute of Functional Materials and Quantum Technologies at Stuttgart University are reported. Whereas IMD supports laser ablation comprising the Two-Temperature Model by default, reliable simulation data mainly can be found for the femtosecond regime, since laser-matter interaction is implemented by the Lambert-Beer law solely. For laser-matter interaction in the picosecond regime, IMD algorithms were modified in order to enable the dynamic recalculation of the dielectric permittivity of each FD cell for every timestep following the corresponding implementation in the open-source hydrodynamic code Polly-2T from the Joint Institute of High Temperatures at the Russian Academy of Sciences, Moscow. Thus, optical changes in material and jet due the temporal evolution of temperature, density and mean charge are taken into account. Moreover, as implemented in Polly-2T as well, a dynamic model for the thermal conductivity of the electron gas is introduced in IMD to consider effects for a wide range of temperatures. Thus, hydrodynamic (HD) and Molecular Dynamics (MD) simulations are compared extracting the residual effects of the different model approaches which persist in a particle-based method (IMD) using an Embedded-Atom potential (EAM) and a finite cell based approach (Polly-2T) employing the semi-empirical equations of state (EOS) including ionization. Simulation results are compared with experimental results and literature data

    Suppression of ablation in femtosecond double pulse experiments

    Full text link
    We report the physical reasons of a curious decrease in the crater depth observed for long delays in experiments with femtosecond double pulses. Detailed hydrodynamic modeling demonstrates that the ablation mechanism is dumped when the delay between the pulses exceeds the electron-ion relaxation time. In this case, the interaction of the second laser pulse with the expanding target material leads to the formation of the second shock wave suppressing the rarefaction wave created by the first pulse. The evidence of this effect follows from the pressure and density profiles obtained at different delays after the first laser pulse.Comment: Submitted to one of the APS Journal

    Vibrational and structural properties of P2O5P_2O_5 glass: Advances from a combined modeling approach

    Get PDF
    We present experimental measurements and ab initio simulations of the crystalline and amorphous phases of P2O5P_2O_5. The calculated Raman, infrared, and vibrational density of states (VDOS) spectra are in excellent agreement with experimental measurements and contain the signatures of all the peculiar local structures of the amorphous phase, namely, bridging and nonbridging (double-bonded or terminal) oxygens and tetrahedral PO4PO_4 units associated with Q2Q^2, Q3Q^3, and Q4Q^4 species (QnQ^n denotes the various types of PO4PO_4 tetrahedra, with nn being the number of bridging oxygen atoms that connect the tetrahedra to the rest of the network). In order to reveal the internal structure of the vibrational spectrum, the characteristics of vibrational modes in different frequency ranges are investigated using a mode-projection approach at different symmetries based on the TdT_d symmetry group. In particular, the VDOS spectrum in the range from 600∼ 600 to 870870 cmcm^-1^1 is dominated by bending (F2F_2b_b) motions related to bridging oxygen and phosphorus (800∼ 800 cmcm^-1^1 band) atoms, while the high-frequency doublet zone (8701250∼ 870 – 1250 cmcm^-1^1 is associated mostly with the asymmetric ((F2F_2s_s) and symmetric (A1A_1) stretching modes, and most prominent peak around 14001400 cmcm^-1^1 (exp. 13801380 cmcm^-1^1) is mainly due to asymmetric stretching vibrations supported by double-bonded oxygen atoms. The lower-frequency range below 600600 cmcm^-1^1 is shown to arise from a mixture of bending (EE and (F2F_2b_b) and rotation (F1F_1) modes. The scissors bending (EE) and rotation (F1F_1) modes are well localized below 600600 cmcm^-1^1, whereas the (F2F_2b_b bending modes spread further into the range 600870∼ 600 – 870 cmcm^-1^1. The projections of the eigenmodes onto Q2Q^2, Q3Q^3, and Q4Q^4 species yield well-defined contributions at frequencies in striking correspondence with the positions of the Raman and infrared bands
    corecore