76 research outputs found

    The Tissue Systems Pathology Test Outperforms Pathology Review in Risk Stratifying Patients With Low-Grade Dysplasia

    Get PDF
    BACKGROUND & AIMS: Low-grade dysplasia (LGD) is associated with an increased risk of progression in Barrett’s esophagus (BE); however, the diagnosis of LGD is limited by substantial interobserver variability. Multiple studies have shown that an objective tissue systems pathology test (TissueCypher Barrett’s Esophagus Test, TSP-9), can effectively predict neoplastic progression in patients with BE. This study aimed to compare the risk stratification performance of the TSP-9 test vs benchmarks of generalist and expert pathology. METHODS: A blinded cohort study was conducted in the screening cohort of a randomized controlled trial of patients with BE with community-based LGD. Biopsies from the first endoscopy with LGD were assessed by the TSP-9 test and independently reviewed by 30 pathologists from 5 countries per standard practice. The accuracy of the test and the diagnoses in predicting high-grade dysplasia (HGD) and esophageal adenocarcinoma (EAC) were compared. RESULTS: A total of 154 patients with BE (122 men), mean age 60.9 ± 9.8 years were studied. Twenty-four patients progressed to HGD/EAC within 5 years (median time of 1.7 years) and 130 did not progress to HGD/EAC within 5 years (median 7.8 years follow-up). The TSP-9 test demonstrated higher sensitivity (71% vs mean 63%, range 33%–88% across 30 pathologists), than the pathology review in detecting patients who progressed (P = .01186). CONCLUSIONS: The TSP-9 test outperformed the pathologists in risk stratifying patients with BE with LGD. Care guided by the test can provide an effective solution to variable pathology review of LGD, improving health outcomes by upstaging care to therapeutic intervention for patients at high risk for progression, while reducing unnecessary interventions in low-risk patients

    Systems Biology Approaches Reveal a Specific Interferon-Inducible Signature in HTLV-1 Associated Myelopathy

    Get PDF
    Human T-lymphotropic virus type 1 (HTLV-1) is a retrovirus that persists lifelong in the host. In ∼4% of infected people, HTLV-1 causes a chronic disabling neuroinflammatory disease known as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The pathogenesis of HAM/TSP is unknown and treatment remains ineffective. We used gene expression microarrays followed by flow cytometric and functional assays to investigate global changes in blood transcriptional profiles of HTLV-1-infected and seronegative individuals. We found that perturbations of the p53 signaling pathway were a hallmark of HTLV-1 infection. In contrast, a subset of interferon (IFN)-stimulated genes was over-expressed in patients with HAM/TSP but not in asymptomatic HTLV-1 carriers or patients with the clinically similar disease multiple sclerosis. The IFN-inducible signature was present in all circulating leukocytes and its intensity correlated with the clinical severity of HAM/TSP. Leukocytes from patients with HAM/TSP were primed to respond strongly to stimulation with exogenous IFN. However, while type I IFN suppressed expression of the HTLV-1 structural protein Gag it failed to suppress the highly immunogenic viral transcriptional transactivator Tax. We conclude that over-expression of a subset of IFN-stimulated genes in chronic HTLV-1 infection does not constitute an efficient host response but instead contributes to the development of HAM/TSP

    Genetics of Multiple Sclerosis

    Full text link

    Response to Lenglinger and Riegler

    No full text
    • …
    corecore