12 research outputs found

    Is Skeletal Muscle Dysfunction a Limiting Factor of Exercise Functional Capacity in Patients with Sickle Cell Disease?

    No full text
    Patients with sickle cell disease (SCD) have reduced functional capacity due to anemia and cardio–respiratory abnormalities. Recent studies also suggest the presence of muscle dysfunction. However, the interaction between exercise capacity and muscle function is currently unknown in SCD. The aim of this study was to explore how muscle dysfunction may explain the reduced functional capacity. Nineteen African healthy subjects (AA), and 24 sickle cell anemia (SS) and 18 sickle cell hemoglobin C (SC) patients were recruited. Maximal isometric torque (Tmax) was measured before and after a self-paced 6-min walk test (6-MWT). Electromyographic activity of the Vastus Lateralis was recorded. The 6-MWT distance was reduced in SS (p < 0.05) and SC (p < 0.01) patients compared to AA subjects. However, Tmax and root mean square value were not modified by the 6-MWT, showing no skeletal muscle fatigue in all groups. In a multiple linear regression model, genotype, step frequency and hematocrit were independent predictors of the 6-MWT distance in SCD patients. Our results suggest that the 6-MWT performance might be primarily explained by anemia and the self-paced step frequency in SCD patients attempting to limit metabolic cost and fatigue, which could explain the absence of muscle fatigue

    Hydroxyurea therapy modulates sickle cell anemia red blood cell physiology: Impact on RBC deformability, oxidative stress, nitrite levels and nitric oxide synthase signalling pathway

    No full text
    International audienceHydroxyurea (HU) has been suggested to act as a nitric oxide (NO) donor in sickle cell anemia (SCA). However, little is known about the HU NO-related effects on red blood cell (RBC) physiology and NO signalling pathway. Thirty-four patients with SCA (22 under HU treatment (HU+) and 12 without (HU-)) and 17 healthy subjects (AA) were included. RBC nitrite content, deformability and reactive oxygen species (ROS) levels were measured. RBC NO-synthase (RBC-NOS) signalling pathway was assessed by the measurement of RBC-NOS serine 1177 and RBC-AKT serine 473 phosphorylation. We also investigated the in vitro effects of Sodium Nitroprusside (SNP), a NO donor, on the same parameters in SCA RBC. RBC nitrite content was higher in HU+ than in HU-and AA. RBC deformability was decreased in SCA patients compared to AA but the decrease was more pronounced in HU-. RBC ROS level was increased in SCA compared to AA but the level was higher in HU-than in HU+. RBC-NOS serine 1177 and RBC-AKT serine 473 phosphorylation were decreased in HU+ compared to HU-and AA. SCA RBC treated with SNP showed increased deformability, reduced ROS content and a decrease in AKT and RBC-NOS phosphorylation. Our study suggests that HU, through its effects on foetal hemoglobin and possibly on NO delivery, would modulate RBC NO signalling pathway, RBC rheology and oxidative stress

    Comparisons of oxygen gradient ektacytometry parameters between sickle cell patients with or without α-thalassaemia

    No full text
    The present study tested the impact of α-thalassaemia on oxygen gradient ektacytometry in sickle cell anaemia (SCA). Three SCA groups were compared: (i) no α-thalassaemia (four α-genes, n = 62), (ii) silent α-thalassaemia (three α-genes, n = 35) and (iii) homozygous α-thalassaemia (two α-genes, n = 12). Red blood cell (RBC) deformability measured in normoxia was not different between the three groups. The lowest RBC deformability reached at low oxygen partial pressure (pO2 ) was greater and the pO2 at which RBC started to sickle was lower in the two α-genes group compared to the other groups. Our present study showed an effect of α-thalassaemia on oxygen gradient ektacytometry in SCA

    Increased retention of functional mitochondria in mature sickle red blood cells is associated with increased sickling tendency, hemolysis and oxidative stress

    Get PDF
    Abnormal retention of mitochondria in mature red blood cells (RBC) has been recently reported in sickle cell anemia (SCA) but their functionality and their role in the pathophysiology of SCA remain unknown. The presence of mitochondria within RBC was determined by flow cytometry in 61 SCA patients and ten healthy donors. Patients were classified according to the percentage of mature RBC with mitochondria contained in the whole RBC population: low (0-4%), moderate (>4% and 8%). RBC rheological, hematological, senescence and oxidative stress markers were compared between the three groups. RBC senescence and oxidative stress markers were also compared between mature RBC containing mitochondria and those without. The functionality of residual mitochondria in sickle RBC was measured by high-resolution respirometry assay and showed detectable mitochondrial oxygen consumption in sickle mature RBC but not in healthy RBC. Increased levels of mitochondrial reactive oxygen species were observed in mature sickle RBC when incubated with Antimycin A versus without. In addition, mature RBC retaining mitochondria exhibited greater levels of reactive oxygen species compared to RBC without mitochondria, as well as greater Ca2+, lower CD47 and greater phosphatidylserine exposure. Hematocrit and RBC deformability were lower, and the propensity of RBC to sickle under deoxygenation was higher, in the SCA group with a high percentage of mitochondria retention in mature RBC. This study showed the presence of functional mitochondria in mature sickle RBC, which could favor RBC sickling and accelerate RBC senescence, leading to increased cellular fragility and hemolysis

    Impaired microvascular function in patients with sickle cell anemia and leg ulcers improved with healing

    No full text
    International audienceSummary Leg Ulcer (LU) pathophysiology is still not well understood in sickle cell anaemia (SCA). We hypothesised that SCA patients with LU would be characterised by lower microvascular reactivity. The aim of the present study was to compare the microcirculatory function (transcutaneous oxygen pressure (TcPO 2 ) on the foot and laser Doppler flowmetry on the arm) and several blood biological parameters between nine SCA patients with active LU (LU+) and 56 SCA patients with no positive history of LU (LU−). We also tested the effects of plasma from LU+ and LU− patients on endothelial cell activation. We observed a reduction of the TcPO 2 in LU+ compared to LU− patients. In addition, LU+ patients exhibited lower cutaneous microvascular vasodilatory capacity in response to acetylcholine, current and local heating compared to LU− patients. Inflammation and endothelial cell activation in response to plasma did not differ between the two groups. Among the nine patients from the LU+ group, eight were followed and six achieved healing in 4.4 ± 2.5 months. Among thus achieving healing, microvascular vasodilatory capacity in response to acetylcholine, current and local heating and TcPO 2 improved after healing. In conclusion, microcirculatory function is impaired in patients with LU, and improves with healing
    corecore