395 research outputs found
Polarization properties of X-ray millisecond pulsars
Radiation of X-ray bursts and of accretion shocks in weakly magnetized
neutron stars in low-mass X-ray binaries is produced in plane-parallel
atmospheres dominated by electron scattering. We first discuss polarization
produced by single (non-magnetic) Compton scattering, in particular the
depolarizing effect of high electron temperature, and then the polarization due
to multiply electron scattering in a slab. We further predict the X-ray pulse
profiles and polarization properties of nuclear- and accretion-powered
millisecond pulsars. We introduce a relativistic rotation vector model, which
includes the effect of rotation of polarization plane due to the rapid motion
of the hot spot as well as the light bending. Future observations of the X-ray
polarization will provide a valuable tool to test the geometry of the emission
region in pulsars and its physical characteristics.Comment: 8 pages, 6 figures, to appear in "X-ray Polarimetry: A New Window in
Astrophysics", edited by R. Bellazzini, E. Costa, G. Matt and G. Tagliaferri
(Cambridge University Press
Time Lags in Compact Objects: Constraints on the Emission Models
Accreting black holes and neutron stars in their hard (low) state show not
only very similar X/gamma-ray spectra but also that the behaviour of their
light curves is quite similar which can be quantified as having similar
power-density spectra and Fourier-frequency-dependent time/phase lags. Taken
together this argues for a common mechanism of the X/gamma-ray production in
these objects. This mechanism is probably a property of the accretion flow only
since it does not depend on the nature of the compact object. In this paper, I
review the observational data paying most attention to the properties of the
temporal variability such as the time/phase lags that hopefully can help us to
discriminate between different theoretical models. I also discuss the models
developed to account for the basic observational facts. Particularly, I show
that the commonly used Compton cloud models with constant temperature cannot
explain variable sources without violating the energy conservation law.
Alternative models where time lags are related to the spectral evolution during
X-ray flares are discussed and compared with observations. Compton reflection
from the outer edge of the accretion disc is shown to markedly affect the time
lag Fourier spectrum.Comment: 16 pages; invited talk at the meeting "X-ray Astronomy 1999: Stellar
Endpoints, AGN and the Diffuse Background", held in Bologna, Italy, September
199
On the Nature of the X-ray Emission from the Accreting Millisecond Pulsar SAX J1808.4-3658
The pulse profiles of the accreting X-ray millisecond pulsar SAX J1808.4-3658
at different energies are studied. The two main emission component, the black
body and the Comptonized tail that are clearly identified in the time-averaged
spectrum, show strong variability with the first component lagging the second
one. The observed variability can be explained if the emission is produced by
Comptonization in a hot slab (radiative shock) of Thomson optical depth ~0.3-1
at the neutron star surface. The emission patterns of the black body and the
Comptonized radiation are different: a "knife"- and a "fan"-like, respectively.
We construct a detailed model of the X-ray production accounting for the
Doppler boosting, relativistic aberration and gravitational light bending in
the Schwarzschild spacetime. We present also accurate analytical formulae for
computations of the light curves from rapidly rotating neutron stars using
formalism recently developed by Beloborodov (2002). Our model reproduces well
the pulse profiles at different energies simultaneously, corresponding phase
lags, as well as the time-averaged spectrum. We constrain the compact star mass
to be bounded between 1.2 and 1.6 solar masses. By fitting the observed
profiles, we determine the radius of the compact object to be R~11 km if M=1.6
M_sun, while for M=1.2 M_sun the best-fitting radius is ~6.5 km, indicating
that the compact object in SAX J1808.4-3658 can be a strange star. We obtain a
lower limit on the inclination of the system of 65 degrees.Comment: 11 pages, 7 figures, submitted to MNRA
Spectra of the spreading layers on the neutron star surface and constraints on the neutron star equation of state
Spectra of the spreading layers on the neutron star surface are calculated on
the basis of the Inogamov-Sunyaev model taking into account general relativity
correction to the surface gravity and considering various chemical composition
of the accreting matter. Local (at a given latitude) spectra are similar to the
X-ray burst spectra and are described by a diluted black body. Total spreading
layer spectra are integrated accounting for the light bending, gravitational
redshift, and the relativistic Doppler effect and aberration. They depend
slightly on the inclination angle and on the luminosity. These spectra also can
be fitted by a diluted black body with the color temperature depending mainly
on a neutron star compactness. Owing to the fact that the flux from the
spreading layer is close to the critical Eddington, we can put constraints on a
neutron star radius without the need to know precisely the emitting region area
or the distance to the source. The boundary layer spectra observed in the
luminous low-mass X-ray binaries, and described by a black body of color
temperature Tc=2.4+-0.1 keV, restrict the neutron star radii to R=14.8+- 1.5 km
(for a 1.4-Msun star and solar composition of the accreting matter), which
corresponds to the hard equation of state.Comment: 13 pages, 13 figures, MNRAS, in pres
The mystery of spectral breaks: Lyman continuum absorption by photon-photon pair production in the Fermi GeV spectra of bright blazars
We reanalyze Fermi/LAT gamma-ray spectra of bright blazars with a higher
photon statistics than in previous works and with new Pass 7 data
representation. In the spectra of the brightest blazar 3C 454.3 and possibly of
4C +21.35 we detect breaks at 5 GeV (in the rest frame) associated with the
photon-photon pair production absorption by He II Lyman continuum (LyC). We
also detect confident breaks at 20 GeV associated with hydrogen LyC both in the
individual spectra and in the stacked redshift-corrected spectrum of several
bright blazars. The detected breaks in the stacked spectra univocally prove
that they are associated with atomic ultraviolet emission features of the
quasar broad-line region (BLR). The dominance of the absorption by hydrogen Ly
complex over He II, rather small detected optical depth, and the break energy
consistent with the head-on collisions with LyC photons imply that the
gamma-ray emission site is located within the BLR, but most of the BLR emission
comes from a flat disk-like structure producing little opacity. Alternatively,
the LyC emission region size might be larger than the BLR size measured from
reverberation mapping, and/or the gamma-ray emitting region is extended. These
solutions would resolve a long-standing issue how the multi-hundred GeV photons
can escape from the emission zone without being absorbed by softer photons.Comment: 7 pages, 6 figures; accepted to Ap
- …