115 research outputs found
Bacterial diseases of bananas and enset: Current state of knowledge and integrated approaches toward sustainable management
Bacterial diseases of bananas and enset have not received, until recently, an equal amount of attention compared to other major threats to banana production such as the fungal diseases black leaf streak (Mycosphaerella fijiensis) and Fusarium wilt (Fusarium oxysporum f. sp. cubense). However, bacteria cause significant impacts on bananas globally and management practices are not always well known or adopted by farmers. Bacterial diseases in bananas and enset can be divided into three groups: (1) Ralstonia-associated diseases (Moko/Bugtok disease caused by Ralstonia solanacearum and banana blood disease caused by R. syzygii subsp. celebesensis); (2) Xanthomonas wilt of banana and enset, caused by Xanthomonas campestris pv. musacearum and (3) Erwinia-associated diseases (bacterial head rot or tip-over disease Erwinia carotovora ssp. carotovora and E. chrysanthemi), bacterial rhizome and pseudostem wet rot (Dickeya paradisiaca formerly E. chrysanthemi pv. paradisiaca). Other bacterial diseases of less widespread importance include: bacterial wilt of abaca, Javanese vascular wilt and bacterial fingertip rot (probably caused by Ralstonia spp., unconfirmed). This review describes global distribution, symptoms, pathogenic diversity, epidemiology and the state of the art for sustainable disease management of the major bacterial wilts currently affecting banana and enset. (Résumé d'auteur
The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem-limited Xanthomonadaceae
<p>Abstract</p> <p>Background</p> <p>The <it>Xanthomonadaceae </it>family contains two xylem-limited plant pathogenic bacterial species, <it>Xanthomonas albilineans </it>and <it>Xylella fastidiosa</it>. <it>X. fastidiosa </it>was the first completely sequenced plant pathogen. It is insect-vectored, has a reduced genome and does not possess <it>hrp </it>genes which encode a Type III secretion system found in most plant pathogenic bacteria. <it>X. fastidiosa </it>was excluded from the <it>Xanthomonas </it>group based on phylogenetic analyses with rRNA sequences.</p> <p>Results</p> <p>The complete genome of <it>X. albilineans </it>was sequenced and annotated. <it>X. albilineans</it>, which is not known to be insect-vectored, also has a reduced genome and does not possess <it>hrp </it>genes. Phylogenetic analysis using <it>X. albilineans </it>genomic sequences showed that <it>X. fastidiosa </it>belongs to the <it>Xanthomonas </it>group. Order of divergence of the <it>Xanthomonadaceae </it>revealed that <it>X. albilineans </it>and <it>X. fastidiosa </it>experienced a convergent reductive genome evolution during their descent from the progenitor of the <it>Xanthomonas </it>genus. Reductive genome evolutions of the two xylem-limited <it>Xanthomonadaceae </it>were compared in light of their genome characteristics and those of obligate animal symbionts and pathogens.</p> <p>Conclusion</p> <p>The two xylem-limited <it>Xanthomonadaceae</it>, during their descent from a common ancestral parent, experienced a convergent reductive genome evolution. Adaptation to the nutrient-poor xylem elements and to the cloistered environmental niche of xylem vessels probably favoured this convergent evolution. However, genome characteristics of <it>X. albilineans </it>differ from those of <it>X. fastidiosa </it>and obligate animal symbionts and pathogens, indicating that a distinctive process was responsible for the reductive genome evolution in this pathogen. The possible role in genome reduction of the unique toxin albicidin, produced by <it>X. albilineans</it>, is discussed.</p
- …