271 research outputs found

    The Host Galaxies of Narrow-Line Seyfert 1s: Evidence for Bar-Driven Fueling

    Full text link
    We present a study of the host-galaxy morphologies of narrow- and broad-line Seyfert 1 galaxies (NLS1s and BLS1s) based on broad-band optical images from the Hubble Space Telescope archives. We find that large-scale stellar bars, starting at ~1 kpc from the nucleus, are much more common in NLS1s than BLS1s. Furthermore, the fraction of NLS1 spirals that have bars increases with decreasing full-width at half-maximum (FWHM) of the broad component of H-beta. These results suggest a link between the large-scale bars, which can support high fueling rates to the inner kpc, and the high mass-accretion rates associated with the supermassive black holes in NLS1s.Comment: 19 pages, 4 figures (1a, 1b, 2, and 3), Accepted for publication in the Astronomical Journa

    Evidence for Relativistic Outflows in Narrow-line Seyfert 1 Galaxies

    Get PDF
    We report the observation of features near 1 keV in the ASCA spectra from three ``Narrow Line Seyfert 1'' (NLS1) galaxies. We interpret these as oxygen absorption in a highly relativistic outflow. If interpreted as absorption edges, the implied velocities are 0.2--0.3c, near the limit predicted by ``line-locking'' radiative acceleration. If instead interpreted as broad absorption lines, the implied velocities are ~0.57c, interestingly near the velocity of particles in the last stable orbit around a Kerr black hole, although a physical interpretation of this is not obvious. The features are reminiscent of the UV absorption lines seen in broad absorption line quasars (BALQSOs), but with larger velocities, and we note the remarkable similarities in the optical emission line and broad band properties of NLS1s and low-ionization BALQSOs.Comment: 9 pages using (AASTeX) aaspp4.sty and 2 Postscript figures. Accepted for publication in Astrophysical Journal Letter

    XMM-Newton monitoring of X-ray variability in the quasar PKS 0558-504

    Get PDF
    We present the temporal analysis of X-ray observations of the radio-loud Narrow-Line Seyfert 1 galaxy (NLS1) PKS 0558-504 obtained during the XMM-Newton Calibration and Performance Verification (Cal/PV) phase. The long term light curve is characterized by persistent variability with a clear tendency for the X-ray continuum to harden when the count rate increases. Another strong correlation on long time scales has been found between the variability in the hard band and the total flux. On shorter time scales the most relevant result is the presence of smooth modulations, with characteristic time of ~ 2 hours observed in each individual observation. The short term spectral variability turns out to be rather complex but can be described by a well defined pattern in the hardness ratio-count rate plane.Comment: 6 pages, 7 figures, accepted for publication in A&A special issue on first results from XM

    Constraints on Extrasolar Planet Populations from VLT NACO/SDI and MMT SDI and Direct Adaptive Optics Imaging Surveys: Giant Planets are Rare at Large Separations

    Full text link
    We examine the implications for the distribution of extrasolar planets based on the null results from two of the largest direct imaging surveys published to date. Combining the measured contrast curves from 22 of the stars observed with the VLT NACO adaptive optics system by Masciadri et al. (2005), and 48 of the stars observed with the VLT NACO SDI and MMT SDI devices by Biller et al. (2007) (for a total of 60 unique stars; the median star for our survey is a 30 Myr K2 star at 25 pc), we consider what distributions of planet masses and semi-major axes can be ruled out by these data, based on Monte Carlo simulations of planet populations. We can set this upper limit with 95% confidence: the fraction of stars with planets with semi-major axis from 20 to 100 AU, and mass >4 M_Jup, is 20% or less. Also, with a distribution of planet mass of dN/dM ~ M^-1.16 between 0.5-13 M_Jup, we can rule out a power-law distribution for semi-major axis (dN/da ~ a^alpha) with index 0 and upper cut-off of 18 AU, and index -0.5 with an upper cut-off of 48 AU. For the distribution suggested by Cumming et al. (2007), a power-law of index -0.61, we can place an upper limit of 75 AU on the semi-major axis distribution. At the 68% confidence level, these upper limits state that fewer than 8% of stars have a planet of mass >4 M_Jup between 20 and 100 AU, and a power-law distribution for semi-major axis with index 0, -0.5, and -0.61 cannot have giant planets beyond 12, 23, and 29 AU, respectively. In general, we find that even null results from direct imaging surveys are very powerful in constraining the distributions of giant planets (0.5-13 M_Jup) at large separations, but more work needs to be done to close the gap between planets that can be detected by direct imaging, and those to which the radial velocity method is sensitive.Comment: 46 pages, 17 figures, accepted to Ap

    XMM-Newton observations of three short period polars: V347 Pav, GG Leo and EU UMa

    Full text link
    We present phase-resolved XMM_Newton data of three short period polars: V347 Pav, GG Leo and EU UMa. All three systems show one dominant accretion region which is seen for approximately half of the orbital cycle. GG Leo shows a strong dip feature in its X-ray and UV light curves which is due to absorption of X-rays from the accretion site by the accretion stream. The emission in the case of EU UMa is dominated by soft X-rays: its soft/hard X-ray ratio is amongst the highest seen in these objects. In contrast, GG Leo and V347 Pav shows a ratio consistent with that predicted by the standard shock model. We infer the mass of the white dwarf and explore the affect of restricting the energy range on the derived parameters.Comment: accepted MNRA

    Neutrino production through hadronic cascades in AGN accretion disks

    Full text link
    We consider the production of neutrinos in active galactic nuclei (AGN) through hadronic cascades. The initial, high energy nucleons are accelerated in a source above the accretion disk around the central black hole. From the source, the particles diffuse back to the disk and initiate hadronic cascades. The observable output from the cascade are electromagnetic radiation and neutrinos. We use the observed diffuse background X-ray luminosity, which presumably results {}from this process, to predict the diffuse neutrino flux close to existing limits from the Frejus experiment. The resulting neutrino spectrum is E2E^{-2} down to the \GeV region. We discuss modifications of this scenario which reduce the predicted neutrino flux.Comment: 12 Pages, LaTeX, TK 92 0

    The Spectral Energy Distribution and Emission-Line properties of the NLS1 Galaxy Arakelian 564

    Full text link
    We present the intrinsic spectral energy distribution (SED) of the NLS1 Arakelian 564, constructed with contemporaneous data obtained during a multi-wavelength, multi-satellite observing campaign in 2000 and 2001. We compare it with that of the NLS1 Ton S180 and with those obtained for BLS1s to infer how the relative accretion rates vary among the Sy1 population. Although the peak of the SED is not well constrained, most of the energy is emitted in the 10-100 eV regime, constituting roughly half of the emitted energy in the optical/X-ray ranges. This is consistent with a primary spectral component peaking in the extreme UV/soft X-ray band, and disk-corona models, hence high accretion rates. Indeed, we estimate that \dot{m}~1. We examine the emission lines in its spectrum, and we constrain the physical properties of the line-emitting gas through photoionization modeling. The line-emitting gas is characterized by log n~11 and log U~0, and is stratified around log U~0. Our estimate of the radius of the H\beta-emitting region ~10 \pm 2 lt-days is consistent with the radius-luminosity relationships found for Sy1 galaxies. We also find evidence for super-solar metallicity in this NLS1. We show that the emission lines are not good diagnostics for the underlying SEDs and that the absorption line studies offer a far more powerful tool to determine the ionizing continuum of AGNs, especially if comparing the lower- and higher-ionization lines.Comment: 15 pages, 10 figures; accepted for publication in The Astrophysical Journal, LaTeX emulateapj.st

    The ASCA X-Ray Spectrum Of The Broad-Line Radio Galaxy Pictor A: A Simple Power Law With No Fe K-alpha Line

    Full text link
    We present the X-ray spectrum of the broad-line radio galaxy Pictor A as observed by ASCA in 1996. The main objective of the observation was to detect and study the profiles of the Fe~Kα\alpha lines. The motivation was the fact that the Balmer lines of this object show well-separated displaced peaks, suggesting an origin in an accretion disk. The 0.5-10 keV X-ray spectrum is described very well by a model consisting of a power law of photon index 1.77 modified by interstellar photoelectric absorption. We find evidence for neither a soft nor a hard (Compton reflection) excess. More importantly, we do not detect an Fe K-alpha line, in marked contrast with the spectra of typical Seyfert galaxies and other broad-line radio galaxies observed by ASCA. The 99%-confidence upper limit on the equivalent width of an unresolved line at a rest energy of 6.4 keV is 100 eV, while for a broad line (FWHM of approximately 60,000 km/s) the corresponding upper limit is 135 eV. We discuss several possible explanations for the weakness of the Fe K-alpha line in Pictor~A paying attention to the currently available data on the properties of Fe K-alpha lines in other broad-line radio galaxies observed by ASCA. We speculate that the absence of a hard excess (Compton reflection) or an Fe K-alpha line is an indication of an accretion disk structure that is different from that of typical Seyfert galaxies, e.g., the inner disk may be an ion torus.Comment: To appear in the Astrophysical Journal (18 pages, including 8 postscript figures; uses psfig.tex

    Constraining the black hole mass and accretion rate in the narrow-line Seyfert 1 RE J1034+396

    Get PDF
    We present a comprehensive study of the spectrum of the narrow-line Seyfert 1 galaxy RE J1034+396, summarizing the information obtained from the optical to X-rays with observations from the William Herschel 4.2m Telescope (WHT), the Hubble Space Telescope, the Extreme UltraViolet Explorer, ROSAT, ASCA and BeppoSAX. The BeppoSAX spectra reveal a soft component which is well-represented by two blackbodies with kT of about 60 eV and 160 eV, mimicking that expected from a hot, optically-thick accretion disc around a low-mass black hole. This is borne out by our modeling of the optical to X-ray nuclear continuum, which constrains the physical parameters of a NLS1 for the first time. The models demonstrate that RE J1034+396 is likely to be a system with a nearly edge-on accretion disk (60 to 75 degrees from the disk axis), accreting at nearly Eddington rates (0.3 to 0.7 L_edd) onto a low mass (about 2 million solar masses) black hole (abridged).Comment: ApJ accepte

    The Nature of the Emission Components in the Quasar/NLS1 PG1211+143

    Get PDF
    We present the study of the emission properties of the quasar PG1211+143, which belongs to the class of Narrow Line Seyfert 1 galaxies. On the basis of observational data analyzed by us and collected from the literature, we study the temporal and spectral variability of the source in the optical/UV/X-ray bands and we propose a model that explains the spectrum emitted in this broad energy range. In this model, the intrinsic emission originating in the warm skin of the accretion disk is responsible for the spectral component that is dominant in the softest X-ray range. The shape of reflected spectrum as well as Fe K line detected in hard X-rays require the reflecting medium to be mildly ionized (xi~500). We identify this reflector with the warm skin of the disk and we show that the heating of the skin is consistent with the classical alpha P_{tot} prescription, while alpha P_{gas} option is at least two orders of magnitude too low to provide the required heating. We find that the mass of the central black hole is relatively small (M_BH~10^7- 10^8 Msun, which is consistent with the Broad Line Region mapping results and characteristic for NLS1 class.Comment: 22 pages, 10 figures, accepted to Ap
    corecore