5,201 research outputs found

    The Atomic and Electronic Structure of Liquid N- Methylformamide as Determined from Diffraction Experiments

    Full text link
    The structure of liquid N-methylformamide (NMF) has been investigated using synchrotron radiation at 77 and 95 keV. The use of high energy photons has several advantages, in this case especially the large accessible momentum transfer range, the low absorption and the direct comparability with neutron diffraction. The range of momentum transfer covered is 0.6 \AA−1<^{-1} < Q <<24.0 \AA−1^{-1}. Neutron diffraction data on the same sample in the same momentum transfer range have been published previously. In that study two differently isotope - substituted species were investigated. In order to compare neutron and photon diffraction data properly Reverse Monte Carlo (RMC-) simulations have been performed. Some modifications had to be added to the standard RMC- code introducing different constraints for inter- and intramolecular distances as these distances partly overlap in liquid NMF. RMC- simulations having only the neutron data as input were carried out in order to test the quality of the X-ray data. The photon structure factor calculated from the RMC- configurations is found to agree well with the present experimental data, while it deviates considerably from earlier X-ray work using low energy photons (17 keV). Finally we discuss whether the different interaction mechanisms of neutrons and photons can be used to directly access the electronic structure in the liquid. Evidence is presented that the elastic self scattering part of liquid NMF is changed with respect to the independent atom approximation. This modification can be accounted for by a simple charged atoms model.Comment: Accepted for publication in Molecular Physics, LaTex file, 12 pages, figures not include

    Envisat - taking the measure of North Atlantic storms

    Get PDF
    Envisat carries a number of sensors able to provide quantitative information on raining clouds: AATSR delivers information on cloud microphysics (particle size, temperature etc.), MWR-2 gives columnar totals for liquid and vapour forms of water, and RA-2 yields rain rate and wind speed. This paper examines the complementarity of these sensors, with a focussed study on significant rain events in the N. Atlantic, covering both coherent large storms and fronts with smaller scale structure. The difference in liquid water estimates from the infra-red and passive systems appears to be related to the temperature and sizes of drops being detected

    Isolated Photons in Deep Inelastic Scattering

    Full text link
    Photon radiation at large transverse momenta at colliders is a detailed probe of hard interaction dynamics. The isolated photon production cross section in deep inelastic scattering was measured recently by the ZEUS experiment, and found to be considerably larger than theoretical predictions obtained with widely used event generators. To investigate this discrepancy, we perform a dedicated parton-level calculation of this observable, including contributions from fragmentation and large-angle radiation. Our results are in good agreement with all aspects of the experimental measurement.Comment: 4 pages, 3 figure

    Squeezed light from spin squeezed atoms

    Get PDF
    We propose to produce pulses of strongly squeezed light by Raman scattering of a strong laser pulse on a spin squeezed atomic sample. We prove that the emission is restricted to a single field mode which perfectly inherits the quantum correlations of the atomic system.Comment: 5 pages, 2 figures, revtex4 beta

    Bivariate genetic modelling of the response to an oral glucose tolerance challenge: A gene x environment interaction approach

    Get PDF
    AIMS/HYPOTHESIS: Twin and family studies have shown the importance of genetic factors influencing fasting and 2 h glucose and insulin levels. However, the genetics of the physiological response to a glucose load has not been thoroughly investigated. METHODS: We studied 580 monozygotic and 1,937 dizygotic British female twins from the Twins UK Registry. The effects of genetic and environmental factors on fasting and 2 h glucose and insulin levels were estimated using univariate genetic modelling. Bivariate model fitting was used to investigate the glucose and insulin responses to a glucose load, i.e. an OGTT. RESULTS: The genetic effect on fasting and 2 h glucose and insulin levels ranged between 40% and 56% after adjustment for age and BMI. Exposure to a glucose load resulted in the emergence of novel genetic effects on 2 h glucose independent of the fasting level, accounting for about 55% of its heritability. For 2 h insulin, the effect of the same genes that already influenced fasting insulin was amplified by about 30%. CONCLUSIONS/INTERPRETATION: Exposure to a glucose challenge uncovers new genetic variance for glucose and amplifies the effects of genes that already influence the fasting insulin level. Finding the genes acting on 2 h glucose independently of fasting glucose may offer new aetiological insight into the risk of cardiovascular events and death from all causes

    Influence of oxygen ordering kinetics on Raman and optical response in YBa_2Cu_3O_{6.4}

    Full text link
    Kinetics of the optical and Raman response in YBa_2Cu_3O_{6.4} were studied during room temperature annealing following heat treatment. The superconducting T_c, dc resistivity, and low-energy optical conductivity recover slowly, implying a long relaxation time for the carrier density. Short relaxation times are observed for the B_{1g} Raman scattering -- magnetic, continuum, and phonon -- and the charge transfer band. Monte Carlo simulations suggest that these two relaxation rates are related to two length scales corresponding to local oxygen ordering (fast) and long chain and twin formation (slow).Comment: REVTeX, 3 pages + 4 PostScript (compressed) figure

    Infinite qubit rings with maximal nearest neighbor entanglement: the Bethe ansatz solution

    Full text link
    We search for translationally invariant states of qubits on a ring that maximize the nearest neighbor entanglement. This problem was initially studied by O'Connor and Wootters [Phys. Rev. A {\bf 63}, 052302 (2001)]. We first map the problem to the search for the ground state of a spin 1/2 Heisenberg XXZ model. Using the exact Bethe ansatz solution in the limit of an infinite ring, we prove the correctness of the assumption of O'Connor and Wootters that the state of maximal entanglement does not have any pair of neighboring spins ``down'' (or, alternatively spins ``up''). For sufficiently small fixed magnetization, however, the assumption does not hold: we identify the region of magnetizations for which the states that maximize the nearest neighbor entanglement necessarily contain pairs of neighboring spins ``down''.Comment: 10 pages, 4 figures; Eq. (45) and Fig. 3 corrected, no qualitative change in conclusion

    Electrical manipulation of spin states in a single electrostatically gated transition-metal complex

    Get PDF
    We demonstrate an electrically controlled high-spin (S=5/2) to low-spin (S=1/2) transition in a three-terminal device incorporating a single Mn2+ ion coordinated by two terpyridine ligands. By adjusting the gate-voltage we reduce the terpyridine moiety and thereby strengthen the ligand-field on the Mn-atom. Adding a single electron thus stabilizes the low-spin configuration and the corresponding sequential tunnelling current is suppressed by spin-blockade. From low-temperature inelastic cotunneling spectroscopy, we infer the magnetic excitation spectrum of the molecule and uncover also a strongly gate-dependent singlet-triplet splitting on the low-spin side. The measured bias-spectroscopy is shown to be consistent with an exact diagonalization of the Mn-complex, and an interpretation of the data is given in terms of a simplified effective model.Comment: Will appear soon in Nanoletter
    • …
    corecore