1,235 research outputs found

    Interplay of Scalar and Fermionic Components in a Multi-component Dark Matter Scenario

    Full text link
    We explore the multi-component dark matter (DM) scenario considered in a simple extension of the standard model with an inert scalar doublet and a singlet fermionic field providing the two DM candidates. The DM states are made stable under the unbroken Z2×Z2′Z_2\times Z_2' discrete symmetry. An additional gauge singlet scalar field is introduced to facilitate the interaction of the dark fermion with the visible sector. Presence of a charged fermionic field having the same Z2Z_2 charge as that of the inert scalar field allows exploring the dark matter mass regions otherwise disallowed, like in the standard Inert Doublet Model (IDM) scenarios. With these arrangements, it is shown that the light DM scenario and the desert region in the intermediate mass range of DM in the standard IDM case can be made compatible with the relic density bounds and direct detection limits. Further, detailed parameter space study is carried out keeping the coexistence of both the scalar and fermionic components in focus, showing that sizable parameter space regions are available for the entire mass range of 10 GeV≤MDM≤200010\ \rm GeV \le M_{DM}\le 2000 GeV.Comment: 19 pages, 19 figures, appendix added, some minor corrections to main tex

    Two Higgs bosons near 125 GeV in the NMSSM: beyond the narrow width approximation

    Get PDF
    In the next-to-minimal supersymmetric (NMS) Standard Model (SM), it is possible for either one of the additional singlet-like scalar and pseudoscalar Higgs bosons to be almost degenerate in mass with the ~125 GeV SM-like Higgs state. In the real NMSSM (rNMSSM), when the mass difference between two scalar states is comparable to their individual total decay widths, the quantum mechanical interference, due to the relevant diagonal as well as off-diagonal terms in the propagator matrix, between them can become sizable. This possibility invalidates usage of the narrow width approximation (NWA) to compute the cross section for the production of a di-photon pair with a given invariant mass via resonant Higgs boson(s) in the gluon fusion process at the Large Hadron Collider (LHC). When, motivated by the baryon asymmetry of the universe, CP-violating (CPV) phases are explicitly invoked in the Higgs sector of the NMSSM, all the interaction eigenstates mix to give five CP-indefinite physical Higgs bosons. In this scenario, the interference effects due the off-diagonal terms in the Higgs mass matrix that mix the pseudoscalar-like state with the SM-like one can also become significant, when these two are sufficiently mass-degenerate. We perform a detailed analysis, in both the real and complex NMSSM, of these interference effects, when the full propagator matrix is taken into account, in the production of a photon pair with an invariant mass near 125 GeV through gluon fusion. We find that these effects can account for up to ~40% of the total cross section for certain model parameter configurations. We also investigate how such mutually interfering states contributing to the ~125 GeV signal observed at the LHC can be distinguished from a single resonance.Comment: 26 pages, 9 figures. Typos corrected, some figures and text improved. Version published in EPJ

    Quantum interference among heavy NMSSM Higgs bosons

    Full text link
    In the Next-to-Minimal Supersymmetric Standard Model (NMSSM), it is possible to have strong mass degeneracies between the new singlet-like scalar and the heavy doublet-like scalar, as well as between the singlet-like and doublet-like pseudoscalar Higgs states. When the difference in the masses of such states is comparable with the sum of their widths, the quantum mechanical interference between their propagators can become significant. We study these effects by taking into account the full Higgs boson propagator matrix in the calculation of the production process of τ+τ−\tau^+\tau^- pairs in gluon fusion at the Large Hadron Collider (LHC). We find that, while these interference effects are sizeable, they are not resolvable in terms of the distributions of differential cross sections, owing to the poor detector resolution of the τ+τ−\tau^+\tau^- invariant mass. They are, however, identifiable via the inclusive cross sections, which are subject to significant variations with respect to the standard approaches, wherein the propagating Higgs bosons are treated independently from one another. We quantify these effects for several representative benchmark points, extracted from a large set of points, obtained by numerical scanning of the NMSSM parameter space, that satisfy the most important experimental constraints currently available.Comment: 18 pages, 5 figures, 2 tables. Revised benchmark points and figures, overall results and conclusions unchanged. Version to appear in PR

    Direct searches of Type III seesaw triplet fermions at high energy e+e−e^+e^- collider

    Full text link
    The signatures of heavy fermionic triplets (Σ\Sigma) arising in scenarios like Type III seesaw model are probed through their direct production and subsequent decay at high energy electron-positron collider. Unlike the case of LHC, the production process has strong dependence on the mixing parameter (Ve,μV_{e,\mu}), making the leptonic collider unique to probe such mixing. We have established that with suitably chosen kinematic cuts, a 1 TeV e+e−e^+e^- collider could probe the presence of Σ\Sigma of mass in the range of 500 GeV having Ve=0.05V_e=0.05 with a few inverse femto barn luminosity through single production. The cross section is found to be not sufficient to probe the case of triplet-muon mixing through single triplet production. On the other hand, the pair production considered at 2 TeV centre of mass energy is capable of probing both the mixing scenarios efficiently. Studying the mass reach, presence of charged fermionic triplets upto a mass of about 980 GeV could be established at 3σ3\sigma level through single production at a 1 TeV e+e−e^+e^- collider with moderate luminosity of 100 fb−1^{-1}, assuming Ve=0.05V_e = 0.05 . The pair production case requires larger luminosity, as the cross section is smaller in this case. With an integrated luminosity of 300 fb−1^{-1}, the mass reach in this case is close to 1 TeV with triplet-muon mixing, while it is slightly lower at about 950 GeV in the case of Vμ=0.05V_\mu = 0.05.Comment: 26 pages, 5 Figure
    • …
    corecore