17 research outputs found

    Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition

    Get PDF
    A unique collection of oceanic samples was gathered by the Tara Oceans expeditions (2009-2013), targeting plankton organisms ranging from viruses to metazoans, and providing rich environmental context measurements. Thanks to recent advances in the field of genomics, extensive sequencing has been performed for a deep genomic analysis of this huge collection of samples. A strategy based on different approaches, such as metabarcoding, metagenomics, single-cell genomics and metatranscriptomics, has been chosen for analysis of size-fractionated plankton communities. Here, we provide detailed procedures applied for genomic data generation, from nucleic acids extraction to sequence production, and we describe registries of genomics datasets available at the European Nucleotide Archive (ENA, www.ebi.ac.uk/ena). The association of these metadata to the experimental procedures applied for their generation will help the scientific community to access these data and facilitate their analysis. This paper complements other efforts to provide a full description of experiments and open science resources generated from the Tara Oceans project, further extending their value for the study of the world's planktonic ecosystems

    Evaluation of methods to concentrate and purify ocean virus communities through comparative, replicated metagenomics.

    Get PDF
    Viruses have global impact through mortality, nutrient cycling and horizontal gene transfer, yet their study is limited by complex methodologies with little validation. Here, we use triplicate metagenomes to compare common aquatic viral concentration and purification methods across four combinations as follows: (i) tangential flow filtration (TFF) and DNase + CsCl, (ii) FeCl(3) precipitation and DNase, (iii) FeCl(3) precipitation and DNase + CsCl and (iv) FeCl(3) precipitation and DNase + sucrose. Taxonomic data (30% of reads) suggested that purification methods were statistically indistinguishable at any taxonomic level while concentration methods were significantly different at family and genus levels. Specifically, TFF-concentrated viral metagenomes had significantly fewer abundant viral types (Podoviridae and Phycodnaviridae) and more variability among Myoviridae than FeCl(3) -precipitated viral metagenomes. More comprehensive analyses using protein clusters (66% of reads) and k-mers (100% of reads) showed 50-53% of these data were common to all four methods, and revealed trace bacterial DNA contamination in TFF-concentrated metagenomes and one of three replicates concentrated using FeCl(3) and purified by DNase alone. Shared k-mer analyses also revealed that polymerases used in amplification impact the resulting metagenomes, with TaKaRa enriching for 'rare' reads relative to PfuTurbo. Together these results provide empirical data for making experimental design decisions in culture-independent viral ecology studies

    Towards quantitative metagenomics of wild viruses and other ultra-low concentration DNA samples: A rigorous assessment and optimization of the linker amplification method.

    No full text
    Metagenomics generates and tests hypotheses about dynamics and mechanistic drivers in wild populations, yet commonly suffers from insufficient (< 1 ng) starting genomic material for sequencing. Current solutions for amplifying sufficient DNA for metagenomics analyses include linear amplification for deep sequencing (LADS), which requires more DNA than is normally available, linker-amplified shotgun libraries (LASLs), which is prohibitively low throughput, and whole-genome amplification, which is significantly biased and thus non-quantitative. Here, we adapt the LASL approach to next generation sequencing by offering an alternate polymerase for challenging samples, developing a more efficient sizing step, integrating a reconditioning PCR step to increase yield and minimize late-cycle PCR artefacts, and empirically documenting the quantitative capability of the optimized method with both laboratory isolate and wild community viral DNA. Our optimized linker amplification method requires as little as 1 pg of DNA and is the most precise and accurate available, with G + C content amplification biases less than 1.5-fold, even for complex samples as diverse as a wild virus community. While optimized here for 454 sequencing, this linker amplification method can be used to prepare metagenomics libraries for sequencing with next-generation platforms, including Illumina and Ion Torrent, the first of which we tested and present data for here
    corecore