1,343 research outputs found

    Analysis of the Scanning Tunneling Microscopy Images of the Charge Density Wave Phase in Quasi-one-dimensional Rb0.3MoO3

    Full text link
    The experimental STM images for the CDW phase of the blue bronze RbMoO3 have been successfully explained on the basis of first-principles DFT calculations. Although the density of states near the Fermi level strongly concentrates in two of the three types of Mo atoms Mo-II and Mo-III, the STM measurement mostly probes the contribution of the uppermost O atoms of the surface, associated with the Mo-IO6 octahedra. In addition, it is found that the surface concentration of Rb atoms plays a key role in determining the surface nesting vector and hence the periodicity of the CDW modulation. Significant experimental inhomogeneities of the b* surface component of the wavevector of the modulation, probed by STM, are reported. The calculated changes in the surface nesting vector are consistent with the observed experimental inhomogeneities.Comment: 4 pages 5 Figure

    Theoretical Aspects of Charge Correlations in θ\theta-(BEDT-TTF)2X_2X

    Full text link
    A review is given on the theoretical studies of charge correlations in θ\theta-(BEDT-TTF)2X_2X. Various studies show that within a purely electronic model on the θ\theta-type lattice with the on-site UU and the nearest neighbor VpV_p and VcV_c interactions, the diagonal stripe, c-axis three-fold, and the vertical stripe charge correlations are favored in the regime Vp<VcV_p< V_c, Vp∼VcV_p\sim V_c, and Vp>VcV_p> V_c, respectively. In the realistic parameter regime of Vp∼VcV_p\sim V_c, there is a competition between c-axis three fold state and the diagonal stripe state. Since these are different from the experimentally observed a-axis three fold and the horizontal stripe charge correlations, additional effects have to be included in order to understand the experiments. The electron-lattice coupling, which tends to distort the lattice into the θd\theta_d-type, is found to favor the horizontal stripe state, suggesting that the occurrence of this stripe ordering in the actual materials may not be of purely electronic origin. On the other hand, distant electron-electron interactions have to be considered in order to understand the a-axis three fold correlation, whose wave vector is close to the nesting vector of the Fermi surface. These studies seem to suggest that the minimal model to understand the charge correlation in θ\theta-(BEDT-TTF)2X_2X may be more complicated than expected. Future problems regarding the competition between different types of charge correlations are discussed.Comment: 22 pages, 15 figures, to be published in Sci. Technol. Adv. Mater., Special Edition on Organic Conductor

    Collective Spin-Density-Wave Response Perpendicular to the Chains of the Quasi One-Dimensional Conductor (TMTSF)2PF6

    Full text link
    Microwave experiments along all three directions of the spin-density-wave model compound (TMTSF)2_2PF6_6 reveal that the pinned mode resonance is present along the aa and b′b^{\prime} axes. The collective transport is considered to be the fingerprint of the condensate. In contrast to common quasi one-dimensional models, the density wave also slides in the perpendicular b′b^{\prime} direction. The collective response is absent along the least conducting c∗c^* direction.Comment: 3 pages, 4 figure

    Dynamical singlets and correlation-assisted Peierls transition in VO2

    Full text link
    A theory of the metal-insulator transition in vanadium dioxide from the high-temperature rutile to the low- temperature monoclinic phase is proposed on the basis of cluster dynamical mean field theory, in conjunction with the density functional scheme. The interplay of strong electronic Coulomb interactions and structural distortions, in particular the dimerization of vanadium atoms in the low temperature phase, plays a crucial role. We find that VO2 is not a conventional Mott insulator, but that the formation of dynamical V-V singlet pairs due to strong Coulomb correlations is necessary to trigger the opening of a Peierls gap.Comment: 5 page

    Equilibrium Low Temperature Heat Capacity of the Spin Density Wave compound (TMTTF)2 Br: effect of a Magnetic Field

    Full text link
    We have investigated the effect of the magnetic field (B) on the very low-temperature equilibrium heat capacity ceq of the quasi-1 D organic compound (TMTTF)2Br, characterized by a commensurate Spin Density Wave (SDW) ground state. Below 1K, ceq is dominated by a Schottky-like contribution, very sensitive to the experimental time scale, a property that we have previously measured in numerous DW compounds. Under applied field (in the range 0.2- 7 T), the equilibrium dynamics, and hence ceq extracted from the time constant, increases enormously. For B = 2-3 T, ceq varies like B2, in agreement with a magnetic Zeeman coupling. Another specific property, common to other Charge/Spin density wave (DW) compounds, is the occurrence of metastable branches in ceq, induced at very low temperature by the field exceeding a critical value. These effects are discussed within a generalization to SDWs in a magnetic field of the available Larkin-Ovchinnikov local model of strong pinning. A limitation of the model when compared to experiments is pointed out.Comment: 10 pages, 11 figure

    Effects of strain on the electronic structure of VO_2

    Full text link
    We present cluster-DMFT (CTQMC) calculations based on a downfolded tight-binding model in order to study the electronic structure of vanadium dioxide (VO_2) both in the low-temperature (M_1) and high-temperature (rutile) phases. Motivated by the recent efforts directed towards tuning the physical properties of VO_2 by depositing films on different supporting surfaces of different orientations we performed calculations for different geometries for both phases. In order to investigate the effects of the different growing geometries we applied both contraction and expansion for the lattice parameter along the rutile c-axis in the 3-dimensional translationally invariant systems miming the real situation. Our main focus is to identify the mechanisms governing the formation of the gap characterizing the M_1 phase and its dependence on strain. We found that the increase of the band-width with compression along the axis corresponding to the rutile c-axis is more important than the Peierls bonding-antibonding splitting

    Evidence for Lattice Effects at the Charge-Ordering Transition in (TMTTF)2_2X

    Full text link
    High-resolution thermal expansion measurements have been performed for exploring the mysterious "structureless transition" in (TMTTF)2_{2}X (X = PF6_{6} and AsF6_{6}), where charge ordering at TCOT_{CO} coincides with the onset of ferroelectric order. Particularly distinct lattice effects are found at TCOT_{CO} in the uniaxial expansivity along the interstack c*\textbf{\textit{c*}}-direction. We propose a scheme involving a charge modulation along the TMTTF stacks and its coupling to displacements of the counteranions X−^{-}. These anion shifts, which lift the inversion symmetry enabling ferroelectric order to develop, determine the 3D charge pattern without ambiguity. Evidence is found for another anomaly for both materials at TintT_{int} ≃\simeq 0.6 ⋅\cdot TCOT_{CO} indicative of a phase transition related to the charge ordering

    A New Scenario on the Metal-Insulator Transition in VO2

    Full text link
    The metal-insulator transition in VO2 was investigated using the three-band Hubbard model, in which the degeneracy of the 3d orbitals, the on-site Coulomb and exchange interactions, and the effects of lattice distortion were considered. A new scenario on the phase transition is proposed, where the increase in energy level separation among the t_2g orbitals caused by the lattice distortion triggers an abrupt change in the electronic configuration in doubly occupied sites from an S=1 Hund's coupling state to a spin S=0 state with much larger energy, and this strongly suppresses the charge fluctuation. Although the material is expected to be a Mott-Hubbard insulator in the insulating phase, the metal-to-insulator transition is not caused by an increase in relative strength of the Coulomb interaction against the electron hopping as in the usual Mott transition, but by the level splitting among the t_2g orbitals against the on-site exchange interaction. The metal-insulator transition in Ti2O3 can also be explained by the same scenario. Such a large change in the 3d orbital occupation at the phase transition can be detected by linear dichroic V 2p x-ray absorption measurements.Comment: 5 pages, 5 figures, to be published in J. Phys. Soc. Jpn. Vol. 72 No. 1

    X-ray observation of crossover of 2kF to 4kF scattering in (N-Methylphenazinium)x(Phenazine)1-x(Tetracyanoquinodimethane) [(NMP)x(Phen)1-x(TCNQ)], 0.5 (< _x <_ 1.0)

    Get PDF
    Journal ArticleWe report the temperature-dependent x-ray diffuse scattering of (NMP),(Phen)(1-x-)(TCNQ) as a function of conduction-electron density (x). With decreasing x three different unique electronic instability regimes are successively observed on the TCNQ chains: (i) the 2kF instability for (2/3<_x<_1, (ii)both 2kF and 4 kF instabilities for 0.57(<_x<_2/3, and (iii) the 4kF instability alone for x close to 0.5. These results provide direct evidence for the critical role of interchain screening in determining the magnitude of the effective Coulomb interaction
    • …
    corecore