1,561 research outputs found

    Collective Spin-Density-Wave Response Perpendicular to the Chains of the Quasi One-Dimensional Conductor (TMTSF)2PF6

    Full text link
    Microwave experiments along all three directions of the spin-density-wave model compound (TMTSF)2_2PF6_6 reveal that the pinned mode resonance is present along the aa and bb^{\prime} axes. The collective transport is considered to be the fingerprint of the condensate. In contrast to common quasi one-dimensional models, the density wave also slides in the perpendicular bb^{\prime} direction. The collective response is absent along the least conducting cc^* direction.Comment: 3 pages, 4 figure

    A New Scenario on the Metal-Insulator Transition in VO2

    Full text link
    The metal-insulator transition in VO2 was investigated using the three-band Hubbard model, in which the degeneracy of the 3d orbitals, the on-site Coulomb and exchange interactions, and the effects of lattice distortion were considered. A new scenario on the phase transition is proposed, where the increase in energy level separation among the t_2g orbitals caused by the lattice distortion triggers an abrupt change in the electronic configuration in doubly occupied sites from an S=1 Hund's coupling state to a spin S=0 state with much larger energy, and this strongly suppresses the charge fluctuation. Although the material is expected to be a Mott-Hubbard insulator in the insulating phase, the metal-to-insulator transition is not caused by an increase in relative strength of the Coulomb interaction against the electron hopping as in the usual Mott transition, but by the level splitting among the t_2g orbitals against the on-site exchange interaction. The metal-insulator transition in Ti2O3 can also be explained by the same scenario. Such a large change in the 3d orbital occupation at the phase transition can be detected by linear dichroic V 2p x-ray absorption measurements.Comment: 5 pages, 5 figures, to be published in J. Phys. Soc. Jpn. Vol. 72 No. 1

    Evidence for Lattice Effects at the Charge-Ordering Transition in (TMTTF)2_2X

    Full text link
    High-resolution thermal expansion measurements have been performed for exploring the mysterious "structureless transition" in (TMTTF)2_{2}X (X = PF6_{6} and AsF6_{6}), where charge ordering at TCOT_{CO} coincides with the onset of ferroelectric order. Particularly distinct lattice effects are found at TCOT_{CO} in the uniaxial expansivity along the interstack c*\textbf{\textit{c*}}-direction. We propose a scheme involving a charge modulation along the TMTTF stacks and its coupling to displacements of the counteranions X^{-}. These anion shifts, which lift the inversion symmetry enabling ferroelectric order to develop, determine the 3D charge pattern without ambiguity. Evidence is found for another anomaly for both materials at TintT_{int} \simeq 0.6 \cdot TCOT_{CO} indicative of a phase transition related to the charge ordering

    Effective band-structure in the insulating phase versus strong dynamical correlations in metallic VO2

    Full text link
    Using a general analytical continuation scheme for cluster dynamical mean field calculations, we analyze real-frequency self-energies, momentum-resolved spectral functions, and one-particle excitations of the metallic and insulating phases of VO2. While for the former dynamical correlations and lifetime effects prevent a description in terms of quasi-particles, the excitations of the latter allow for an effective band-structure. We construct an orbital-dependent, but static one-particle potential that reproduces the full many-body spectrum. Yet, the ground state is well beyond a static one-particle description. The emerging picture gives a non-trivial answer to the decade-old question of the nature of the insulator, which we characterize as a ``many-body Peierls'' state.Comment: 5 pages, 4 color figure

    Competing phases in the high field phase diagram of (TMTSF)2_2ClO4_4

    Full text link
    A model is presented for the high field phase diagram of (TMTSF)2_2ClO4_4, taking into account the anion ordering, which splits the Fermi surface in two bands. For strong enough field, the largest metal-SDW critical temperature corresponds to the N=0 phase, which originates from two intraband nesting processes. At lower temperature, the competition between these processes puts at disadvantage the N=0 phase vs. the N=1 phase, which is due to interband nesting. A first order transition takes then place from the N=0 to N=1 phase. We ascribe to this effect the experimentally observed phase diagrams.Comment: 5 pages, 3 figures (to appear in Phys. Rev. Lett.

    Low temperature structural effects in the (TMTSF)2_2PF6_6 and AsF6_6 Bechgaard salts

    Full text link
    We present a detailed low-temperature investigation of the statics and dynamics of the anions and methyl groups in the organic conductors (TMTSF)2_2PF6_6 and (TMTSF)2_2AsF6_6 (TMTSF : tetramethyl-tetraselenafulvalene). The 4 K neutron scattering structure refinement of the fully deuterated (TMTSF)2_2PF6_6-D12 salt allows locating precisely the methyl groups at 4 K. This structure is compared to the one of the fully hydrogenated (TMTSF)2_2PF6_6-H12 salt previously determined at the same temperature. Surprisingly it is found that deuteration corresponds to the application of a negative pressure of 5 x 102^2 MPa to the H12 salt. Accurate measurements of the Bragg intensity show anomalous thermal variations at low temperature both in the deuterated PF6_6 and AsF6_6 salts. Two different thermal behaviors have been distinguished. Low-Bragg-angle measurements reflect the presence of low-frequency modes at characteristic energies {\theta}E_E = 8.3 K and {\theta}E_E = 6.7 K for the PF6_6-D12 and AsF6_6-D12 salts, respectively. These modes correspond to the low-temperature methyl group motion. Large-Bragg-angle measurements evidence an unexpected structural change around 55 K which probably corresponds to the linkage of the anions to the methyl groups via the formation of F...D-CD2 bonds observed in the 4 K structural refinement. Finally we show that the thermal expansion coefficient of (TMTSF)2_2PF6_6 is dominated by the librational motion of the PF6_6 units. We quantitatively analyze the low-temperature variation of the lattice expansion via the contribution of Einstein oscillators, which allows us to determine for the first time the characteristic frequency of the PF6 librations: {\theta}E_E = 50 K and {\theta}E_E = 76 K for the PF6_6-D12 and PF6_6-H12 salts, respectively
    corecore