2,089 research outputs found

    Prediction of daily global solar radiation using different empirical models on the basis of meteorological parameters at Trans Himalaya Region, Nepal

    Get PDF
    Global Solar Radiation (GSR) is the cleanest and freely available energy resource on the earth.  GSR  was measured for six years (2010 -2015) at the horizontal surface using calibrated first-class CMP6 pyranometer at Kathmandu (Lat. 27.70o N, Long. 85.5oE and Alt. 1350m). This paper explains the daily, monthly, and seasonal variations of GSR and also compares with sunshine hour, ambient temperature, relative humidity, and precipitation to GSR. The annual average global solar radiation is about 4.16 kWh/m2/day which is a significant amount to promote solar active and passive energy technologies at the Trans-Himalaya region. In this study, the meteorological parameters are utilized in the regression technique for four different empirical models and finally, the empirical constants are found. Thus obtained coefficients are utilized to predict the GSR using meteorological parameters for the years to come. In addition, the predicted GSR is found to be closer to the measured value of GSR. The values are justified by using statistical tools such as coefficient of determination (R2), root mean square error (RMSE), mean percentage error (MPE), and mean bias error (MBE). Finally, the values of R2, RMSE, MPE, and MBE are found to be 0.792, 1.405, -1.014, and 0.011, respectively for the model (D), which are based on sunshine hour, temperature and relative humidity. In this model, the empirical constants, a = 0.155, b = 0.134, c = 0.014 and d = 0.0007 are determined which can be utilized at the similar geographical locations of Nepal. BIBECHANA 18 (1) (2021) 159-16

    Prediction of daily global solar radiation using different empirical models on the basis of meteorological parameters at Trans Himalaya Region, Nepal

    Get PDF
    Global Solar Radiation (GSR) is the cleanest and freely available energy resource on the earth.  GSR  was measured for six years (2010 -2015) at the horizontal surface using calibrated first-class CMP6 pyranometer at Kathmandu (Lat. 27.70o N, Long. 85.5oE and Alt. 1350m). This paper explains the daily, monthly, and seasonal variations of GSR and also compares with sunshine hour, ambient temperature, relative humidity, and precipitation to GSR. The annual average global solar radiation is about 4.16 kWh/m2/day which is a significant amount to promote solar active and passive energy technologies at the Trans-Himalaya region. In this study, the meteorological parameters are utilized in the regression technique for four different empirical models and finally, the empirical constants are found. Thus obtained coefficients are utilized to predict the GSR using meteorological parameters for the years to come. In addition, the predicted GSR is found to be closer to the measured value of GSR. The values are justified by using statistical tools such as coefficient of determination (R2), root mean square error (RMSE), mean percentage error (MPE), and mean bias error (MBE). Finally, the values of R2, RMSE, MPE, and MBE are found to be 0.792, 1.405, -1.014, and 0.011, respectively for the model (D), which are based on sunshine hour, temperature and relative humidity. In this model, the empirical constants, a = 0.155, b = 0.134, c = 0.014 and d = 0.0007 are determined which can be utilized at the similar geographical locations of Nepal. BIBECHANA 18 (1) (2021) 159-16

    A differentiable forward model for the concurrent, multi-peak Bragg coherent x-ray diffraction imaging problem

    Full text link
    We present a general analytic approach to spatially resolve the nano-scale lattice distortion field of strained and defected compact crystals with Bragg coherent x-ray diffraction imaging (BCDI). Our approach relies on fitting a differentiable forward model simultaneously to multiple BCDI datasets corresponding to independent Bragg reflections from the same single crystal. It is designed to be faithful to heterogeneities that potentially manifest as phase discontinuities in the coherently diffracted wave, such as lattice dislocations in an imperfect crystal. We retain fidelity to such small features in the reconstruction process through a Fourier transform -based resampling algorithm designed to largely avoid the point spread tendencies of commonly employed interpolation methods. The reconstruction model defined in this manner brings BCDI reconstruction into the scope of explicit optimization driven by automatic differentiation. With results from simulations and experimental diffraction data, we demonstrate significant improvement in the final image quality compared to conventional phase retrieval, enabled by explicitly coupling multiple BCDI datasets into the reconstruction loss function.Comment: 30 pages, 23 figure

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore