7 research outputs found

    Diagonally Reinforced Concrete Coupling Beams: Effects of Axial Restraint

    Get PDF
    Diagonally reinforced concrete coupling beams are commonly used in mid- and high-rise buildings to connect adjacent structural walls separated by openings. Under lateral loading, these beams can undergo large inelastic deformations but must retain their strength for the system to behave as desired. It is not known how or whether resistance to axial elongation of the beams, provided by the floor diaphragms and stiff structural walls, affects the strength and deformation capacity of coupling beams. The influence of axial restraint on diagonally reinforced concrete coupling beams was investigated by comparing the results of an axially-restrained coupling beam specimen with those of a nominally equivalent control specimen tested without axial restraint but using the same loading protocol. The presence of axial restraint increased the strength of the coupling beam specimen by approximately 30%, decreased the chord rotation capacity by approximately 10%, and resulted in buckling of diagonal reinforcement at smaller chord rotations

    Diagonally Reinforced Concrete Coupling Beams: Effects of Axial Restraint

    Get PDF
    Two pairs of nominally identical large-scale coupling beam specimens were tested under reversed cyclic displacements. Within each pair, one specimen was free to elongate and the other had resistance to elongation during testing. The specimens had clear span-to-overall-depth ratios of 1.9, a nominal concrete compressive strength of 6000 psi (42 MPa), Grade 60 or 120 (420 or 830) diagonal bars, and nominal shear stresses near the ACI Building Code (ACI 318) limit of 10√fc′ psi (0.83√fc′ MPa). Passive axial restraint resulted in beam axial forces and was correlated with higher coupling beam strength, lower chord rotation capacity, earlier diagonal bar buckling, and greater damage. The importance of these effects increased with the magnitude of the induced axial force. The ACI equation for coupling beam nominal strength (based on the area, yield stress, and inclination of diagonal bars) underestimated beam strength by up to 80%, whereas estimates based on flexural strength were substantially more accurate and allowed consideration of axial force effects

    Development of a Precision Statement for ASTM A1061

    Get PDF
    An interlaboratory study involving 19 laboratories was conducted to quantify the precision of ASTM A1061-16, Standard Test Methods for Testing Multi-wire Steel Prestressing Strand. This standard includes methods for measuring strand yield strength, elastic modulus, elongation, and breaking strength. Strand specimens were 0.375, 0.500, and 0.600-in. [9.5, 12.7, and 15.2 mm] diameter Grade 270 [1860] low-relaxation seven-wire steel prestressing strand compliant with ASTM A416. The reported results were used to examine how the methods are implemented in practice and how precise the results are when the methods are implemented correctly, resulting in the development of a precision statement proposed for adoption into the standard. Precision statistics were calculated for yield strength, elastic modulus, elongation, and breaking strength. Methods for obtaining the yield strength, elastic modulus, and breaking strength were found to be acceptably precise, with reproducibility limits less than 4, 10, and 3 %, respectively, of the mean reported values. Methods for obtaining elongation were highly imprecise, resulting in a reproducibility limit near 50% of the mean reported value. Compliance with requirements of ASTM A1061 was also an issue. At leas tone result was classified as valid from 74, 82, 32, and 100 % of laboratories that submitted results for yield strength, elastic modulus, elongation, and breaking strength, respectively. It was found that the frequency with which strands fracture within a distance of 0.25 in. [6 mm] of the grips is very dependent on the type of grips used, with V-grips without cushioning material resulting in strand fracture near grips in 78 % of tests. Other methods of gripping strand resulted in no more than 35 % of specimens fracturing within a distance of 0.25 in. [6 mm] of the grips. This may be cause to disallow use of serrated V-grips without cushioning material, as fracture near grips was shown to correlate with a statistically significant reduction in breaking strength and elongation for some strand diameters. Finally, use of the 0.2 % offset method to determine yield strength, currently not an accepted method, resulted in added variability and small (1 to 5%) but consistent increases in yield strength compared to other methods that were statistically significant. Several changes to ASTM A1061 are proposed aimed at improving the clarity of the standard

    Interlaboratory study of standard methods for testing multiwire steel prestressing strand

    Get PDF
    An interlaboratory study involving 19 laboratories was conducted to quantify the precision of ASTM A1061-16, Standard Test Methods for Testing Multi-Wire Steel Prestressing Strand, which describes methods for measuring yield strength, elastic modulus, elongation, breaking strength, and relaxation. Relaxation measurements were outside the project scope. Yield strength, elastic modulus, and breaking strength results showed low variability, with reproducibility limits less than 4%, 10%, and 3% of the mean reported values, respectively. Elongation results exhibited high variability, resulting in a reproducibility limit close to 50% of the mean reported value. Compliance with the requirements of the standard was an issue, with 74%, 82%, 32%, and 100% of laboratories submitting valid results for yield strength, elastic modulus, elongation, and breaking strength, respectively. Strand fracture location was sensitive to the type of grips used for testing. Several changes to ASTM A1061 are proposed to improve clarity and precision

    Adapting Segment Anything Model (SAM) through Prompt-based Learning for Enhanced Protein Identification in Cryo-EM Micrographs

    Full text link
    Cryo-electron microscopy (cryo-EM) remains pivotal in structural biology, yet the task of protein particle picking, integral for 3D protein structure construction, is laden with manual inefficiencies. While recent AI tools such as Topaz and crYOLO are advancing the field, they do not fully address the challenges of cryo-EM images, including low contrast, complex shapes, and heterogeneous conformations. This study explored prompt-based learning to adapt the state-of-the-art image segmentation foundation model Segment Anything Model (SAM) for cryo-EM. This focus was driven by the desire to optimize model performance with a small number of labeled data without altering pre-trained parameters, aiming for a balance between adaptability and foundational knowledge retention. Through trials with three prompt-based learning strategies, namely head prompt, prefix prompt, and encoder prompt, we observed enhanced performance and reduced computational requirements compared to the fine-tuning approach. This work not only highlights the potential of prompting SAM in protein identification from cryo-EM micrographs but also suggests its broader promise in biomedical image segmentation and object detection

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundEstimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period.Methods22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution.FindingsGlobal all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations.InterpretationGlobal adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore